-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluation.py
90 lines (74 loc) · 3.73 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import acclib
import numpy as np
import os
import itertools
import make_prediction_file as mpf
submissionsdir = 'all_submissions_val'
VOTING = 'normal'
#VOTING = 'weighted'
#VOTING = 'class_weighted'
MAX_MODELS_REMOVED = 0
def find_the_best():
#This def attempts to find the best combination of models for the bagging approach and find the best voting scheme:
#1. majority vote
#2. weighted majority voting: the weight of the vote is determined by the overal accuracy of that respective model
#first we do this only for the total model, using all available submissions
#I did this because i needed the predictions,labels and prediction_files variables
predictions, votes, labels, prediction_files = mpf.check_vote_accuracy(submissionsdir)
print '-------------------------------'
#first i check the accuracy for the full model
accuracy = acclib.get_accuracy_per_class(votes, labels)
prediction_files = list(prediction_files)
bestAccuracy = 0.0
bestFiles = []
bestCombination = []
total = 0
#get the model_acc
print 'GETTING THE MODEL ACCURACY'
model_acc = np.zeros(len(prediction_files))
model_acc_per_class = np.zeros((len(prediction_files), len(np.unique(labels))))
for i in range(len(prediction_files)):
print i, prediction_files[i]
votes = mpf.vote_prediction(predictions[:, i])
model_acc[i], model_acc_per_class[i, :] = acclib.get_accuracy_per_class(votes, labels)
print model_acc
print 'Accuracy per model per class', model_acc_per_class
print 'Mean accuracy per class', np.mean(model_acc_per_class[:,0]), np.mean(model_acc_per_class[:,1]), np.mean(model_acc_per_class[:,2]), np.mean(model_acc_per_class[:,3])
for m in range(model_acc_per_class.shape[1]):
#model_acc_per_class[:,m] = model_acc_per_class[:,m] - np.min(model_acc_per_class[:,m])
model_acc_per_class[:,m] = model_acc_per_class[:,m] / np.max(model_acc_per_class[:,m])
print model_acc_per_class
import time
start = time.time()
#then we try all possible combinations
for i in range(predictions.shape[1], 0, -1)[:MAX_MODELS_REMOVED+1]:
combinations = itertools.combinations(range(predictions.shape[1]), i)
for k, c in enumerate(combinations):
combination_files = [prediction_files[x] for x in c]
print 'Predicting using: {}'.format(combination_files)
if VOTING == 'normal':
votes = mpf.vote_prediction(predictions[:, list(c)])
if VOTING == 'weighted':
votes = mpf.vote_prediction_weighted(predictions[:, list(c)], model_acc[list(c)])
if VOTING == 'class_weighted':
votes = mpf.vote_prediction_class_weighted(predictions[:, list(c)], model_acc_per_class[list(c), :])
#print 'Voting performance weighted is {:.1f}%'.format(100. * np.mean(votes_weighted == labels))
accuracy, acc_per_class = acclib.get_accuracy_per_class(votes, labels)
if accuracy > bestAccuracy:
bestAccuracy = accuracy
bestCombination = c
bestFiles = combination_files
print 'Voting performance is {:.1f}%'.format(100. * np.mean(votes == labels))
total += 1
print i, total
print 'done in:' , time.time() - start, 'seconds'
print 'total:', total
print 'BEST MODEL'
print 'voting:', VOTING
print 'total amount of models used:', len(bestCombination)
print bestFiles
print bestAccuracy
print bestCombination
#mpf.make_vote_prediction_file(title='vote_class_weighted', submissions_folder='submissions', model_acc_per_class=model_acc_per_class)
return votes
find_the_best()