Skip to content

Database Update

Database Update #194

name: Database Update
on:
push:
schedule:
- cron: '0 12 * * SUN'
jobs:
Add-New-Ticker:
runs-on: ubuntu-latest
steps:
- name: checkout repo content
uses: actions/checkout@v3
- name: pull changes
run: git pull https://${{secrets.PAT}}@github.com/JerBouma/FinanceDatabase.git main
- name: setup python
uses: actions/setup-python@v4
with:
python-version: '3.10'
- run: pip install -r requirements.txt
- run: pip install financedatabase openpyxl
- name: Add New Tickers and Update Old Ones
uses: jannekem/run-python-script-action@v1
with:
script: |
import numpy as np
import pandas as pd
# Collect NASDAQ data
nasdaq = pd.read_json("https://raw.githubusercontent.com/rreichel3/US-Stock-Symbols/main/nasdaq/nasdaq_full_tickers.json")
nasdaq = nasdaq.set_index('symbol')
nasdaq['exchange'] = 'NMS'
nasdaq['market'] = 'NASDAQ Global Select'
# Collect NYSE data
nyse = pd.read_json("https://raw.githubusercontent.com/rreichel3/US-Stock-Symbols/main/nyse/nyse_full_tickers.json")
nyse = nyse.set_index('symbol')
nyse['exchange'] = 'ASE'
nyse['market'] = 'NYSE MKT'
# Collect AMEX data, since it got acquired this is now the same exchange/market as NYSE
amex = pd.read_json("https://raw.githubusercontent.com/rreichel3/US-Stock-Symbols/main/amex/amex_full_tickers.json")
amex = amex.set_index('symbol')
amex['exchange'] = 'ASE'
amex['market'] = 'NYSE MKT'
# Combine the datasets
exchange_data = pd.concat([nasdaq, nyse, amex])
# Obtain the categories from the FinanceDatabase for conversion
fd_categories_path = 'compression/categories/github_exchange_categories.xlsx'
fd_sectors = pd.read_excel(fd_categories_path, sheet_name='sector', index_col=1)
fd_industry_groups = pd.read_excel(fd_categories_path, sheet_name='industry_group', index_col=1)
fd_industries = pd.read_excel(fd_categories_path, sheet_name='industry', index_col=1)
# Read the equities database
equities = pd.read_csv('database/equities.csv', index_col=0)
ticker_dict = {}
# Loop over the exchange dataset and create a new object that will be added to the database
for index, row in exchange_data.iterrows():
if row['marketCap']:
market_cap_value = float(row['marketCap'])
if market_cap_value >= 200_000_000_000:
market_cap = 'Mega Cap'
elif market_cap_value >= 10_000_000_000 and market_cap_value < 200_000_000_000:
market_cap= 'Large Cap'
elif market_cap_value >= 2_000_000_000 and market_cap_value < 10_000_000_000:
market_cap = 'Mid Cap'
elif market_cap_value >= 300_000_000 and market_cap_value < 2_000_000_000:
market_cap = 'Small Cap'
elif market_cap_value >= 50_000_000 and market_cap_value < 300_000_000:
market_cap = 'Micro Cap'
else:
market_cap = 'Nano Cap'
else:
market_cap = np.nan
try:
# Checks if ticker exists, if yes, continue
fd_data = equities.loc[index]
if fd_data['market_cap'] != market_cap and market_cap == market_cap:
ticker_dict[index] = {'symbol': index}
for column, value in fd_data.items():
if column == 'market_cap':
ticker_dict[index][column] = market_cap
else:
ticker_dict[index][column] = value
continue
except KeyError:
if row['name'] == 'Nano Labs Ltd American Depositary Shares':
# Specific case where the ticker is NA which is recognized
# as a NaN instead meaning it will continuously be added
index = "NA"
ticker_dict[index] = {}
ticker_dict[index]['name'] = row['name']
ticker_dict[index]['summary'] = np.nan
ticker_dict[index]['currency'] = "USD"
try:
industry = fd_industries.loc[row['industry']].iloc[0]
if isinstance(industry, pd.Series):
industry = industry[0]
ticker_dict[index]['industry'] = industry
except KeyError:
ticker_dict[index]['industry'] = np.nan
try:
industry_divison = equities[equities['industry'] == ticker_dict[index]['industry']]
industry_group = industry_divison['industry_group'].mode()[0]
ticker_dict[index]['industry_group'] = industry_group
except KeyError:
ticker_dict[index]['industry_group'] = np.nan
try:
sector_division = equities[(equities['industry_group'] == ticker_dict[index]['industry_group']) & (equities['industry'] == ticker_dict[index]['industry'])]
sector = sector_division['sector'].mode()[0]
ticker_dict[index]['sector'] = sector
except Exception:
ticker_dict[index]['sector'] = np.nan
ticker_dict[index]['exchange'] = row['exchange']
ticker_dict[index]['market'] = row['market']
ticker_dict[index]['country'] = row['country']
ticker_dict[index]['state'] = np.nan
ticker_dict[index]['city'] = np.nan
ticker_dict[index]['zipcode'] = np.nan
ticker_dict[index]['website'] = np.nan
ticker_dict[index]['market_cap'] = market_cap
ticker_dict[index]['isin'] = np.nan
ticker_dict[index]['cusip'] = np.nan
ticker_dict[index]['figi'] = np.nan
ticker_dict[index]['composite_figi'] = np.nan
ticker_dict[index]['shareclass_figi'] = np.nan
# Create a DataFrame out of the created dictionary
updated_companies = pd.DataFrame.from_dict(ticker_dict, orient='index')
updated_companies.index.name = 'symbol'
print(f"There are {len(updated_companies)} new updates!")
if not updated_companies.empty:
# Loop over all acquired values and update data
for index, values in updated_companies.iterrows():
try:
equities.loc[index] = updated_companies.loc[index]
except KeyError:
equities = pd.concat([equities, values])
# Sort the index
equities = equities.sort_index()
# Send to CSV
equities.to_csv('database/equities.csv')
- name: Commit files and log
run: |
git config --global user.name 'GitHub Action'
git config --global user.email '[email protected]'
git add -A
git checkout main
git diff-index --quiet HEAD || git commit -am "Update database with new tickers"
git push
- name: Check run status
if: steps.run.outputs.status != '0'
run: exit "${{ steps.run.outputs.status }}"
Update-Compression-Files:
needs: Add-New-Ticker
runs-on: ubuntu-latest
steps:
- name: checkout repo content
uses: actions/checkout@v3
- name: pull changes
run: git pull https://${{secrets.PAT}}@github.com/JerBouma/FinanceDatabase.git main
- name: setup python
uses: actions/setup-python@v4
with:
python-version: '3.10'
- run: pip install -r requirements.txt
- run: pip install financedatabase
- run : pip install openpyxl
- name: Update Compressions
uses: jannekem/run-python-script-action@v1
with:
script: |
import financedatabase as fd
import pandas as pd
cryptos = pd.read_csv('database/cryptos.csv')
cryptos.to_csv('compression/cryptos.bz2', index=False, compression='bz2')
currencies = pd.read_csv('database/currencies.csv')
currencies.to_csv('compression/currencies.bz2', index=False, compression='bz2')
equities = pd.read_csv('database/equities.csv')
equities.to_csv('compression/equities.bz2', index=False, compression='bz2')
etfs = pd.read_csv('database/etfs.csv')
etfs.to_csv('compression/etfs.bz2', index=False, compression='bz2')
funds = pd.read_csv('database/funds.csv')
funds.to_csv('compression/funds.bz2', index=False, compression='bz2')
indices = pd.read_csv('database/indices.csv')
indices.to_csv('compression/indices.bz2', index=False, compression='bz2')
moneymarkets = pd.read_csv('database/moneymarkets.csv')
moneymarkets.to_csv('compression/moneymarkets.bz2', index=False, compression='bz2')
- name: Commit files and log
run: |
git config --global user.name 'GitHub Action'
git config --global user.email '[email protected]'
git add -A
git checkout main
git diff-index --quiet HEAD || git commit -am "Update Compression Files"
git push
- name: Check run status
if: steps.run.outputs.status != '0'
run: exit "${{ steps.run.outputs.status }}"
Update-Categorization-Files:
needs: [Add-New-Ticker, Update-Compression-Files]
runs-on: ubuntu-latest
steps:
- name: checkout repo content
uses: actions/checkout@v3
- name: pull changes
run: git pull https://${{secrets.PAT}}@github.com/JerBouma/FinanceDatabase.git main
- name: setup python
uses: actions/setup-python@v4
with:
python-version: '3.10'
- run: pip install -r requirements.txt
- run: pip install financedatabase
- name: Update categories
uses: jannekem/run-python-script-action@v1
with:
script: |
import financedatabase as fd
import pandas as pd
cryptos = pd.read_csv("database/cryptos.csv", index_col=0)
cryptos_categories = {}
for column in cryptos:
if column in ['name', 'summary']:
continue
cryptos_categories[column] = cryptos[column].dropna().unique()
cryptos_categories[column].sort()
df_temp = pd.DataFrame.from_dict(cryptos_categories, orient='index').reset_index()
df_temp.to_csv('compression/categories/cryptos_categories.gzip', index=False, compression='gzip')
currencies = pd.read_csv("database/currencies.csv", index_col=0)
currencies_categories = {}
for column in currencies:
if column in ['name']:
continue
currencies_categories[column] = currencies[column].dropna().unique()
currencies_categories[column].sort()
df_temp = pd.DataFrame.from_dict(currencies_categories, orient='index').reset_index()
df_temp.to_csv('compression/categories/currencies_categories.gzip', index=False, compression='gzip')
equities = pd.read_csv("database/equities.csv", index_col=0)
equities_categories = {}
for column in equities:
if column in ['name', 'summary', 'website']:
continue
equities_categories[column] = equities[column].dropna().unique()
equities_categories[column].sort()
df_temp = pd.DataFrame.from_dict(equities_categories, orient='index').reset_index()
df_temp.to_csv('compression/categories/equities_categories.gzip', index=False, compression='gzip')
etfs = pd.read_csv("database/etfs.csv", index_col=0)
etfs_categories = {}
for column in etfs:
if column in ['name', 'summary']:
continue
etfs_categories[column] = etfs[column].dropna().unique()
etfs_categories[column].sort()
df_temp = pd.DataFrame.from_dict(etfs_categories, orient='index').reset_index()
df_temp.to_csv('compression/categories/etfs_categories.gzip', index=False, compression='gzip')
funds = pd.read_csv("database/funds.csv", index_col=0)
funds_categories = {}
for column in funds:
if column in ['name', 'summary', 'manager_name', 'manager_bio']:
continue
funds_categories[column] = funds[column].dropna().unique()
funds_categories[column].sort()
df_temp = pd.DataFrame.from_dict(funds_categories, orient='index').reset_index()
df_temp.to_csv('compression/categories/funds_categories.gzip', index=False, compression='gzip')
indices = pd.read_csv("database/indices.csv", index_col=0)
indices_categories = {}
for column in indices:
if column in ['name']:
continue
indices_categories[column] = indices[column].dropna().unique()
indices_categories[column].sort()
df_temp = pd.DataFrame.from_dict(indices_categories, orient='index').reset_index()
df_temp.to_csv('compression/categories/indices_categories.gzip', index=False, compression='gzip')
moneymarkets = pd.read_csv("database/moneymarkets.csv", index_col=0)
moneymarkets_categories = {}
for column in moneymarkets:
if column in ['name']:
continue
moneymarkets_categories[column] = moneymarkets[column].dropna().unique()
moneymarkets_categories[column].sort()
df_temp = pd.DataFrame.from_dict(moneymarkets_categories, orient='index').reset_index()
df_temp.to_csv('compression/categories/moneymarkets_categories.gzip', index=False, compression='gzip')
- name: Commit files and log
run: |
git config --global user.name 'GitHub Action'
git config --global user.email '[email protected]'
git add -A
git checkout main
git diff-index --quiet HEAD || git commit -am "Update Categorization Files"
git push
- name: Check run status
if: steps.run.outputs.status != '0'
run: exit "${{ steps.run.outputs.status }}"
Check-GICS-Categorisation:
needs: [Add-New-Ticker, Update-Compression-Files, Update-Categorization-Files]
runs-on: ubuntu-latest
steps:
- name: checkout repo content
uses: actions/checkout@v3
- name: setup python
uses: actions/setup-python@v4
with:
python-version: '3.10'
- run: pip install -r requirements.txt
- run: pip install financedatabase
- name: Check GICS Categorisation
uses: jannekem/run-python-script-action@v1
with:
script: |
import pandas as pd
import json
invalid_rows = pd.DataFrame()
errors = []
gics = json.load(open("compression/categories/gics_categories.json", "r"))
equities = pd.read_csv("database/equities.csv", index_col=0)
filtered_data = equities[equities['sector'].notna() & equities['industry_group'].notna() & equities['industry'].notna()]
for index, row in filtered_data.iterrows():
sector, industry_group, industry = row['sector'], row['industry_group'], row['industry']
try:
# Search whether it can find the combination
gics[sector][industry_group][industry]
except KeyError as error:
# If it can't, add to invalid_rows DataFrame
row['error'] = error
invalid_rows = pd.concat([invalid_rows, row], axis=1)
if not invalid_rows.empty:
invalid_rows = invalid_rows.T
print("Invalid Rows for:")
for index, row in invalid_rows.iterrows():
print(f"{index}: {row['error']}")
raise ValueError("There are invalid sector, industry groups and/or industries found. "
"Please check if it adheres to https://www.msci.com/our-solutions/indexes/gics")