Skip to content

FLaRe: Achieving Masterful and Adaptive Robot Policies with Large-Scale Reinforcement Learning Fine-Tuning

License

Notifications You must be signed in to change notification settings

JiahengHu/FLaRe

Repository files navigation

FLaRe: Achieving Masterful and Adaptive Robot Policies with Large-Scale Reinforcement Learning Fine-Tuning

FLaRe arXiv License Python 3.9+ Code style: black

This repository contains the code and data for the paper "FLaRe: Achieving Masterful and Adaptive Robot Policies with Large-Scale Reinforcement Learning Fine-Tuning"

🐍 Setting up the Python environment 🐍

🐳 Docker 🐳 [Recommended]

Please see the README.md in the docker directory for instructions on how to build and run the docker image.

or use the pre-built image from Docker Hub:

docker pull khzeng777/spoc-rl:v2

then:

export CODE_PATH=/path/to/this/repo
export DATA_PATH=/path/to/data
export DOCKER_IMAGE=khzeng777/spoc-rl:v2
docker run \
    --gpus all \
    --device /dev/dri \
    --mount type=bind,source=${CODE_PATH},target=/root/spoc \
    --mount type=bind,source=${DATA_PATH},target=/root/data \
    --shm-size 50G \
    -it ${DOCKER_IMAGE}:latest

and use the following conda environment:

conda activate spoc

🛠 Local installation 🛠 [Not recommended]

pip install -r requirements.txt
pip install --extra-index-url https://ai2thor-pypi.allenai.org ai2thor==0+966bd7758586e05d18f6181f459c0e90ba318bec
pip install --extra-index-url https://miropsota.github.io/torch_packages_builder detectron2==0.6+864913fpt2.1.2cu121

📊 Data 📊

📥 Downloading the training data 📥

FLaRe is trained using astar from SPOC CHORES benchamrk. The astar type has the agent navigating and fetching one of fifteen possible object types. To download the training data for the astar type, run the following command:

python -m scripts.download_training_data --save_dir /your/local/save/dir --types astar

for example

python -m scripts.download_training_data --save_dir data --types astar

📁 Dataset format 📁

Once you run the above command, you will have a directory structure that looks like this

/your/local/save/dir/<astar OR all>_type
    <TASK_TYPE>
        house_id_to_sub_house_id_train.json # This file contains a mapping that's needed for train data loading
        house_id_to_sub_house_id_val.json   # This file contains a mapping that's needed for val data loading
        train
            <HOUSEID>
                hdf5_sensors.hdf5 -- containing all the sensors that are not videos
                    <EPISODE_NUMBER>
                        <SENSOR_NAME>
                raw_navigation_camera__<EPISODE_NUMBER>.mp4
                raw_manipulation_camera__<EPISODE_NUMBER>.mp4
        val
            # As with train

The hdf5_sensors.hdf5 contains the necessary information to train FLaRe, including the house id, starting pose, and target object type/id.

For more information about the downloaded data, including trajectory videos and recorded sensors, please refer to SPOC documentation.

🏋 Training and Evaluation 🏋

In order to run training and evaluation you'll need:

  1. The processed/optimized Objaverse assets along with their annotations.
  2. The set of ProcTHOR-Objaverse houses you'd like to train/evaluate on.
  3. For evaluation only, a trained model checkpoint.

Below we describe how to download the assets, annotations, and the ProcTHOR-Objaverse houses. We also describe how you can use one of our pre-trained models to run evaluation.

💾 Downloading assets, annotations, and houses 💾

📦 Downloading optimized Objaverse assets and annotations 📦

Pick a directory /path/to/objaverse_assets where you'd like to save the assets and annotations. Then run the following commands:

python -m objathor.dataset.download_annotations --version 2023_07_28 --path /path/to/objaverse_assets
python -m objathor.dataset.download_assets --version 2023_07_28 --path /path/to/objaverse_assets

These will create the directory structure:

/path/to/objaverse_assets
    2023_07_28
        annotations.json.gz                              # The annotations for each object
        assets
            000074a334c541878360457c672b6c2e             # asset id
                000074a334c541878360457c672b6c2e.pkl.gz
                albedo.jpg
                emission.jpg
                normal.jpg
                thor_metadata.json
            ... #  39663 more asset directories

🏠 Downloading ProcTHOR-Objaverse houses 🏠

Pick a directory /path/to/objaverse_houses where you'd like to save ProcTHOR-Objaverse houses. Then run:

python -m scripts.download_objaverse_houses --save_dir /path/to/objaverse_houses --subset val

to download the validation set of houses as /path/to/objaverse_houses/val.jsonl.gz. You can also change val to train to download the training set of houses.

🛣 Setting environment variables 🛣

Next you need to set the following environment variables:

export PYTHONPATH=/path/to/flare
export OBJAVERSE_HOUSES_DIR=/path/to/objaverse_houses
export OBJAVERSE_DATA_DIR=/path/to/objaverse_assets

For training, we recommend to set two more environment variables to avoid timeout issues from AllenAct:

export ALLENACT_DEBUG=True
export ALLENACT_DEBUG_VST_TIMEOUT=2000

🚀 Running RL finetuning 🚀

Download pretrained IL ckpt:

python scripts/download_trained_ckpt.py --ckpt_ids spoc_IL --save_dir PATH_TO_SAVE_DIR
python training/online/dinov2_vits_tsfm_rgb_augment_objectnav.py train --il_ckpt_path IL_CKPT_PATH --num_train_processes NUM_OF_TRAIN_PROCESSES --output_dir PATH_TO_RESULT --dataset_dir PATH_TO_DATASET

for example

python training/online/dinov2_vits_tsfm_rgb_augment_objectnav.py train --il_ckpt_path ckpt/spoc_IL/model.pt --num_train_processes 32 --output_dir results --dataset_dir data/astar/ObjectNavType

🚀 (Optional) Running IL training 🚀

While it would be easier to directly download our pre-trained model, it is possible to retrain the IL model from scratch through the following command:

export LONG_ACTION_NAME=1
export PYTHONPATH=/path/to/flare
export OBJAVERSE_HOUSES_DIR=/path/to/objaverse_houses
export OBJAVERSE_DATA_DIR=/path/to/objaverse_assets
python -m training.offline.train_pl --max_samples 10000000 --eval_max_samples 100 --eval_every 400 --model_version small_3 --sliding_window 100 --per_gpu_batch 16 --lr 0.0002 --data_dir PATH_TO_DATA --dataset_version CHORES --model EarlyFusionCnnTransformer --input_sensors raw_navigation_camera raw_manipulation_camera last_actions an_object_is_in_hand --precision 16-mixed --resume_local --output_dir OUTPUT_DIR --loss action --max_epochs 400

🚀 Running evaluation with a trained model 🚀

Download trained ckpt:

python scripts/download_trained_ckpt.py --save_dir PATH_TO_SAVE_DIR --ckpt_ids TaskType

for example:

python scripts/download_trained_ckpt.py --save_dir ckpt --ckpt_ids pickup

Run evaluation:

python training/online/online_eval.py --shuffle --eval_subset minival --output_basedir DIR --test_augmentation --task_type TaskType --input_sensors raw_navigation_camera raw_manipulation_camera last_actions an_object_is_in_hand --house_set objaverse --num_workers NUM_WORKERS

📝 Cite us 📝

@article{
        hu2024flare,
        title={FLaRe: Achieving Masterful and Adaptive Robot Policies with Large-Scale Reinforcement Learning Fine-Tuning},
        author={Jiaheng Hu and Rose Hendrix and Ali Farhadi and Aniruddha Kembhavi and Roberto Martin-Martin and Peter Stone and Kuo-Hao Zeng and Kiana Ehsani},
        journal={arXiv},
        year={2024},
        eprint={2409.16578},
}

About

FLaRe: Achieving Masterful and Adaptive Robot Policies with Large-Scale Reinforcement Learning Fine-Tuning

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages