Skip to content

JungNam-Kim/pytorch-cifar

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

78 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Train CIFAR10 with PyTorch

I'm playing with PyTorch on the CIFAR10 dataset.

Prerequisites

  • Python 3.6+
  • PyTorch 1.0+

Training

# Start training with: 
python main.py

# You can manually resume the training with: 
python main.py --resume --lr=0.01

Accuracy

Model Acc.
VGG16 92.64%
ResNet18 93.02%
ResNet50 93.62%
ResNet101 93.75%
RegNetX_200MF 94.24%
RegNetY_400MF 94.29%
MobileNetV2 94.43%
ResNeXt29(32x4d) 94.73%
ResNeXt29(2x64d) 94.82%
SimpleDLA 94.89%
DenseNet121 95.04%
PreActResNet18 95.11%
DPN92 95.16%
DLA 95.47%

About

95.47% on CIFAR10 with PyTorch

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%