-
Notifications
You must be signed in to change notification settings - Fork 89
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add Cooley-Tukey discrete FFT implementation utility
to later analyze the quality of sampling algorithms for path tracing by their resulting image frequency spectrum. Ideally, the resulting image should not contain lower-frequency components, because the human eye is very sensitive to those. For example, blue noise contains mostly high-frequency components.
- Loading branch information
1 parent
bdb5675
commit e5ddcb9
Showing
1 changed file
with
135 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,135 @@ | ||
/* | ||
* Copyright LWJGL. All rights reserved. | ||
* License terms: https://www.lwjgl.org/license | ||
*/ | ||
package org.lwjgl.demo.util; | ||
|
||
import javax.imageio.ImageIO; | ||
import java.awt.image.BufferedImage; | ||
import java.awt.image.WritableRaster; | ||
|
||
/** | ||
* Implementation of Cooley-Tukey radix-2 Decimation-In-Time (DIT) discrete Fourier transform (DFT) algorithm | ||
* to analyze the frequency spectrum of an image, such as those produced by sampling in path tracing. | ||
* <p> | ||
* This can be used to assess the quality of a sampling algorithm by analyzing the frequency spectrum of the resulting | ||
* image. Ideally, it should not contain any low-frequency components, which the human eye is very sensitive to. | ||
* | ||
* @author Kai Burjack | ||
*/ | ||
public class FFT { | ||
|
||
private static double[][][] transpose(double[][][] inout) { | ||
int N = inout.length; | ||
for (int i = 0; i < N; i++) | ||
for (int j = i + 1; j < N; j++) { | ||
double[] tmp = inout[i][j]; | ||
inout[i][j] = inout[j][i]; | ||
inout[j][i] = tmp; | ||
} | ||
return inout; | ||
} | ||
|
||
private static double[][][] dfft2D(double[][][] inout) { | ||
int N = inout.length; | ||
for (int i = 0; i < N; i++) | ||
inout[i] = dfftShift(dfft1D(inout[i])); | ||
transpose(inout); | ||
for (int i = 0; i < N; i++) | ||
inout[i] = dfftShift(dfft1D(inout[i])); | ||
return transpose(inout); | ||
} | ||
|
||
private static double[][] dfft1D(double[][] inout) { | ||
int N = inout.length; | ||
if (N == 1) return inout; | ||
double[][] e = new double[N>>>1][], o = new double[N>>>1][]; | ||
for (int i = 0; i < N>>>1; i++) { | ||
e[i] = inout[i << 1]; | ||
o[i] = inout[(i<<1) + 1]; | ||
} | ||
double[][] q = dfft1D(e), v = dfft1D(o); | ||
for (int i = 0; i < N>>>1; i++) { | ||
double k = (i<<1) * Math.PI / N; | ||
double cr = org.joml.Math.cos(k), ci = org.joml.Math.sin(k); | ||
inout[i] = new double[]{q[i][0] + cr * v[i][0] - ci * v[i][1], q[i][1] + cr * v[i][1] + ci * v[i][0]}; | ||
inout[i + (N>>>1)] = new double[]{q[i][0] - (cr * v[i][0] - ci * v[i][1]), q[i][1] - (cr * v[i][1] + ci * v[i][0])}; | ||
} | ||
return inout; | ||
} | ||
|
||
private static double[][][] toComplexArray(double[][] in) { | ||
int N = in.length; | ||
double[][][] output = new double[N][N][]; | ||
for (int i = 0; i < N; i++) | ||
for (int j = 0; j < N; j++) | ||
output[i][j] = new double[]{in[i][j], 0}; | ||
return output; | ||
} | ||
|
||
private static double[][] dfftShift(double[][] inout) { | ||
int N = inout.length; | ||
int hN = N>>>1; | ||
for (int i = 0; i < hN; i++) { | ||
double[] tmp = inout[i]; | ||
inout[i] = inout[i + hN]; | ||
inout[i + hN] = tmp; | ||
} | ||
return inout; | ||
} | ||
|
||
/** | ||
* Compute the frequency spectrum of the given input image, which is the magnitude of the 2D DFT of the input image. | ||
* | ||
* @param input | ||
* the input image | ||
* @return the frequency spectrum of the input image | ||
*/ | ||
public static byte[][] frequencySpectrum(double[][] input) { | ||
double[][][] shifted = dfft2D(toComplexArray(input)); | ||
int N = shifted.length; | ||
double max = 0; | ||
double[][] mag = new double[N][N]; | ||
for (int i = 0; i < N; i++) | ||
for (int j = 0; j < N; j++) { | ||
mag[i][j] = Math.hypot(shifted[i][j][0], shifted[i][j][1]); | ||
if (mag[i][j] > max) | ||
max = mag[i][j]; | ||
} | ||
byte[][] res = new byte[N][N]; | ||
for (int i = 0; i < N; i++) | ||
for (int j = 0; j < N; j++) { | ||
int value = (int) (255 * (Math.log1p(mag[i][j]) / Math.log1p(max))); | ||
res[i][j] = (byte) value; | ||
} | ||
return res; | ||
} | ||
|
||
// Test | ||
|
||
private static double[][] loadFromResource(String resource) throws Exception { | ||
BufferedImage image = ImageIO.read(FFT.class.getClassLoader().getResourceAsStream(resource)); | ||
int N = image.getWidth(); | ||
double[][] output = new double[N][N]; | ||
for (int i = 0; i < N; i++) | ||
for (int j = 0; j < N; j++) | ||
output[i][j] = (image.getRGB(i, j) & 0xFF) / 255.0; | ||
return output; | ||
} | ||
|
||
public static void main(String[] args) throws Exception { | ||
double[][] input = loadFromResource("org/lwjgl/demo/opengl/raytracing/tutorial4_2/blueNoise.png"); | ||
long time1 = System.nanoTime(); | ||
byte[][] spectrum = frequencySpectrum(input); | ||
long time2 = System.nanoTime(); | ||
System.out.println("Frequency spectrum computation took " + (time2 - time1) / 1E6 + " ms"); | ||
int N = spectrum.length; | ||
BufferedImage res = new BufferedImage(N, N, BufferedImage.TYPE_BYTE_GRAY); | ||
WritableRaster raster = res.getRaster(); | ||
for (int i = 0; i < N; i++) | ||
for (int j = 0; j < N; j++) | ||
raster.setSample(i, j, 0, spectrum[i][j]); | ||
javax.imageio.ImageIO.write(res, "PNG", new java.io.File("spectrum.png")); | ||
} | ||
|
||
} |