Skip to content

Luab/Explanation_by_Progressive_Exaggeration_Pytorch

Repository files navigation

Explanation by Progressive Exaggeration Pytorch

Unofficial PyTorch reimplementation of ICLR 2020 paper: Explanation By Progressive Exaggeration.

Paper

Installation

$ pip install -r requirements.txt

Usage

  1. Prepare the dataset for training
./notebooks/PreprocessData.ipynb
  1. Train a classifier. Skip this step if you have a pretrained classifier.
    Training logs of the classifier are saved at: ./$log_dir$/$name$.
    Model checkpoints of the classifier are saved at: ./checkpoints/classifier/$name$ ($log_dir$ and $name$ are defined in the corresponding config file).

2.a. To train a multi-label classifier on all 40 attributes

python train_classifier.py --config 'configs/celebA_DenseNet_Classifier.yaml'

2.b. To train a binary classifier on 1 attribute

python train_classifier.py --config 'configs/celebA_Young_Classifier.yaml'
  1. Process the output of the classifier and create input for Explanation model by discretizing the posterior probability. The input data for the Explanation model is saved at: $log_dir$/$name$/explainer_input/
./notebooks/ProcessClassifierOutput.ipynb
  1. Train explainer model. The output is saved at: $log_dir$/$name.
python train_explainer.py --config 'configs/celebA_Young_Explainer.yaml'
  1. Explore the trained Explanation model and see qualitative results.
./notebooks/TestExplainer.ipynb
  1. Save results of the trained Explanation model for quantitative experiments.
python test_explainer.py --config 'configs/celebA_Young_Explainer.yaml'
  1. Use the saved results to perform experiments as shown in paper
./notebooks/Experiment_CelebA.ipynb 

Releases

No releases published

Packages

No packages published