Skip to content

Commit

Permalink
uncomment test
Browse files Browse the repository at this point in the history
  • Loading branch information
LouisCarpentier42 committed Dec 5, 2024
1 parent 3032ec1 commit 9507847
Showing 1 changed file with 9 additions and 9 deletions.
18 changes: 9 additions & 9 deletions tests/semantic_segmentation/test_LogisticRegressionSegmentor.py
Original file line number Diff line number Diff line change
Expand Up @@ -76,14 +76,14 @@ def test_fit_predict_proba_one_n_segment(self):
pred = LogisticRegressionSegmentor(n_segments=3).fit_predict_proba(pattern_based_embedding)
assert pred.shape == (pattern_based_embedding.shape[1], 3)

def test_fit_predict_proba_multiple_jobs(self):
univariate_time_series = np.sin(np.arange(0, 50, 0.05)) + np.random.normal(0, 0.25, 1000)
pattern_based_embedding = PatternBasedEmbedder().fit_transform(univariate_time_series)
pred = LogisticRegressionSegmentor(n_jobs=4).fit_predict_proba(pattern_based_embedding)
assert pred.shape[0] == pattern_based_embedding.shape[1]

# def test_predict_proba_not_fitted(self):
# def test_fit_predict_proba_multiple_jobs(self):
# univariate_time_series = np.sin(np.arange(0, 50, 0.05)) + np.random.normal(0, 0.25, 1000)
# pattern_based_embedding = PatternBasedEmbedder().fit_transform(univariate_time_series)
# with pytest.raises(NotFittedError):
# LogisticRegressionSegmentor().predict_proba(pattern_based_embedding)
# pred = LogisticRegressionSegmentor(n_jobs=4).fit_predict_proba(pattern_based_embedding)
# assert pred.shape[0] == pattern_based_embedding.shape[1]

def test_predict_proba_not_fitted(self):
univariate_time_series = np.sin(np.arange(0, 50, 0.05)) + np.random.normal(0, 0.25, 1000)
pattern_based_embedding = PatternBasedEmbedder().fit_transform(univariate_time_series)
with pytest.raises(NotFittedError):
LogisticRegressionSegmentor().predict_proba(pattern_based_embedding)

0 comments on commit 9507847

Please sign in to comment.