Skip to content

MaQingya/easy-faster-rcnn.pytorch

 
 

Repository files navigation

easy-faster-rcnn.pytorch

An easy implementation of Faster R-CNN in PyTorch.

Demo

  1. Download checkpoint from here
  2. Follow the instructions in Setup 2 & 3
  3. Run inference script
    $ python infer.py -s=coco2017 -b=resnet101 -c=/path/to/checkpoint.pth --image_min_side=800 --image_max_side=1333 --anchor_sizes="[64, 128, 256, 512]" --rpn_post_nms_top_n=1000 /path/to/input/image.jpg /path/to/output/image.jpg
    

Features

  • Supports PyTorch 1.0
  • Supports PASCAL VOC 2007 and MS COCO 2017 datasets
  • Supports ResNet-18, ResNet-50 and ResNet-101 backbones (from official PyTorch model)
  • Supports ROI Pooling and ROI Align pooler modes
  • Supports Multi-Batch and Multi-GPU training
  • Matches the performance reported by the original paper
  • It's efficient with maintainable, readable and clean code

Benchmarking

  • PASCAL VOC 2007

    • Train: 2007 trainval (5011 images)
    • Eval: 2007 test (4952 images)
    Implementation Backbone GPU #GPUs #Batches/GPU Training Speed (FPS) Inference Speed (FPS) mAP image_min_side image_max_side anchor_ratios anchor_sizes pooler_mode rpn_pre_nms_top_n (train) rpn_post_nms_top_n (train) rpn_pre_nms_top_n (eval) rpn_post_nms_top_n (eval) anchor_smooth_l1_loss_beta proposal_smooth_l1_loss_beta batch_size learning_rate momentum weight_decay step_lr_sizes step_lr_gamma warm_up_factor warm_up_num_iters num_steps_to_finish
    Original Paper VGG-16 Tesla K40 1 1 - ~ 5 0.699 - - - - - - - - - - - - - - - - - - - -
    ruotianluo/pytorch-faster-rcnn ResNet-101 TITAN Xp - - - - 0.7576 - - - - - - - - - - - - - - - - - - - -
    jwyang/faster-rcnn.pytorch ResNet-101 TITAN Xp 1 1 - - 0.752 - - - - - - - - - - - - - - - - - - - -
    Ours ResNet-101 GTX 1080 Ti 1 4 7.12 15.05 0.7562 600 1000 [(1, 2), (1, 1), (2, 1)] [128, 256, 512] align 12000 2000 6000 300 1.0 1.0 4 0.004 0.9 0.0005 [12500, 17500] 0.1 0.3333 500 22500
  • MS COCO 2017

    • Train: 2017 Train drops images without any objects (117266 images)
    • Eval: 2017 Val drops images without any objects (4952 images)
    Implementation Backbone GPU #GPUs #Batches/GPU Training Speed (FPS) Inference Speed (FPS) AP@[.5:.95] AP@[.5] AP@[.75] AP S AP M AP L image_min_side image_max_side anchor_ratios anchor_sizes pooler_mode rpn_pre_nms_top_n (train) rpn_post_nms_top_n (train) rpn_pre_nms_top_n (eval) rpn_post_nms_top_n (eval) anchor_smooth_l1_loss_beta proposal_smooth_l1_loss_beta batch_size learning_rate momentum weight_decay step_lr_sizes step_lr_gamma warm_up_factor warm_up_num_iters num_steps_to_finish
    ruotianluo/pytorch-faster-rcnn ResNet-101 TITAN Xp - - - - 0.354 - - - - - - - - - - - - - - - - - - - - - - - - -
    jwyang/faster-rcnn.pytorch ResNet-101 TITAN Xp 8 2 - - 0.370 - - - - - - - - - - - - - - - - - - - - - - - - -
    Ours ResNet-101 GTX 1080 Ti 1 2 4.84 8.00 0.356 0.562 0.389 0.176 0.398 0.511 800 1333 [(1, 2), (1, 1), (2, 1)] [64, 128, 256, 512] align 12000 2000 6000 1000 0.1111 1.0 2 0.0025 0.9 0.0001 [480000, 640000] 0.1 0.3333 500 720000
    Ours ResNet-101 Telsa P100 4 4 11.64 5.10 0.370 0.576 0.403 0.187 0.414 0.522 800 1333 [(1, 2), (1, 1), (2, 1)] [64, 128, 256, 512] align 12000 2000 6000 1000 0.1111 1.0 16 0.02 0.9 0.0001 [120000, 160000] 0.1 0.3333 500 180000
  • PASCAL VOC 2007 Cat Dog

    • Train: 2007 trainval drops categories other than cat and dog (750 images)
    • Eval: 2007 test drops categories other than cat and dog (728 images)
  • MS COCO 2017 Person

    • Train: 2017 Train drops categories other than person (64115 images)
    • Eval: 2017 Val drops categories other than person (2693 images)
  • MS COCO 2017 Car

    • Train: 2017 Train drops categories other than car (12251 images)
    • Eval: 2017 Val drops categories other than car (535 images)
  • MS COCO 2017 Animal

    • Train: 2017 Train drops categories other than bird, cat, dog, horse, sheep, cow, elephant, bear, zebra and giraffe (23989 images)
    • Eval: 2017 Val drops categories other than bird, cat, dog, horse, sheep, cow, elephant, bear, zebra and giraffe (1016 images)

Requirements

  • Python 3.6

  • torch 1.0

  • torchvision 0.2.1

  • tqdm

    $ pip install tqdm
    
  • tensorboardX

    $ pip install tensorboardX
    
  • OpenCV 3.4 (required by infer_stream.py)

    $ pip install opencv-python~=3.4
    
  • websockets (required by infer_websocket.py)

    $ pip install websockets
    

Setup

  1. Prepare data

    1. For PASCAL VOC 2007

      1. Download dataset

      2. Extract to data folder, now your folder structure should be like:

        easy-faster-rcnn.pytorch
            - data
                - VOCdevkit
                    - VOC2007
                        - Annotations
                            - 000001.xml
                            - 000002.xml
                            ...
                        - ImageSets
                            - Main
                                ...
                                test.txt
                                ...
                                trainval.txt
                                ...
                        - JPEGImages
                            - 000001.jpg
                            - 000002.jpg
                            ...
                - ...
        
    2. For MS COCO 2017

      1. Download dataset

      2. Extract to data folder, now your folder structure should be like:

        easy-faster-rcnn.pytorch
            - data
                - COCO
                    - annotations
                        - instances_train2017.json
                        - instances_val2017.json
                        ...
                    - train2017
                        - 000000000009.jpg
                        - 000000000025.jpg
                        ...
                    - val2017
                        - 000000000139.jpg
                        - 000000000285.jpg
                        ...
                - ...
        
  2. Build Non Maximum Suppression and ROI Align modules (modified from facebookresearch/maskrcnn-benchmark)

    1. Install

      $ python support/setup.py develop
      
    2. Uninstall

      $ python support/setup.py develop --uninstall
      
    3. Test

      $ python test/nms/test_nms.py
      
      • Result

  3. Install pycocotools for MS COCO 2017 dataset

    1. Clone and build COCO API

      $ git clone https://github.com/cocodataset/cocoapi
      $ cd cocoapi/PythonAPI
      $ make
      

      It's not necessary to be under project directory

    2. If an error with message pycocotools/_mask.c: No such file or directory has occurred, please install cython and try again

      $ pip install cython
      
    3. Copy pycocotools into project

      $ cp -R pycocotools /path/to/project
      

Usage

  1. Train

    • To apply default configuration (see also config/)

      $ python train.py -s=voc2007 -b=resnet101
      
    • To apply custom configuration (see also train.py)

      $ python train.py -s=voc2007 -b=resnet101 --weight_decay=0.0001
      
    • To apply recommended configuration (see also scripts/)

      $ bash ./scripts/voc2007/train-bs2.sh resnet101 /path/to/outputs/dir
      
  2. Evaluate

    • To apply default configuration (see also config/)

      $ python eval.py -s=voc2007 -b=resnet101 /path/to/checkpoint.pth
      
    • To apply custom configuration (see also eval.py)

      $ python eval.py -s=voc2007 -b=resnet101 --rpn_post_nms_top_n=1000 /path/to/checkpoint.pth
      
    • To apply recommended configuration (see also scripts/)

      $ bash ./scripts/voc2007/eval.sh resnet101 /path/to/checkpoint.pth
      
  3. Infer

    • To apply default configuration (see also config/)

      $ python infer.py -s=voc2007 -b=resnet101 -c=/path/to/checkpoint.pth /path/to/input/image.jpg /path/to/output/image.jpg
      
    • To apply custom configuration (see also infer.py)

      $ python infer.py -s=voc2007 -b=resnet101 -c=/path/to/checkpoint.pth -p=0.9 /path/to/input/image.jpg /path/to/output/image.jpg
      
    • To apply recommended configuration (see also scripts/)

      $ bash ./scripts/voc2007/infer.sh resnet101 /path/to/checkpoint.pth /path/to/input/image.jpg /path/to/output/image.jpg
      
  4. Infer other sources

    • Source from stream (see also infer_stream.py)

      # Camera
      $ python infer_stream.py -s=voc2007 -b=resnet101 -c=/path/to/checkpoint.pth -p=0.9 0 5
      
      # Video
      $ python infer_stream.py -s=voc2007 -b=resnet101 -c=/path/to/checkpoint.pth -p=0.9 /path/to/file.mp4 5
      
      # Remote
      $ python infer_stream.py -s=voc2007 -b=resnet101 -c=/path/to/checkpoint.pth -p=0.9 rtsp://184.72.239.149/vod/mp4:BigBuckBunny_115k.mov 5
      
    • Source from websocket (see also infer_websocket.py)

      1. Start web server

        $ cd webapp
        $ python -m http.server 8000
        
      2. Launch service

        $ python infer_websocket.py -s=voc2007 -b=resnet101 -c=/path/to/checkpoint.pth -p=0.9
        
      3. Navigate website: http://127.0.0.1:8000/

        Sample video from Pexels

Notes

  • Illustration for "find labels for each anchor_bboxes" in region_proposal_network.py

  • Illustration for NMS CUDA

  • Plot of beta smooth L1 loss function

About

An easy implementation of Faster R-CNN (https://arxiv.org/pdf/1506.01497.pdf) in PyTorch.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 77.4%
  • Cuda 9.2%
  • C++ 8.1%
  • Shell 3.1%
  • JavaScript 1.7%
  • HTML 0.5%