-
Notifications
You must be signed in to change notification settings - Fork 23
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
c726e3f
commit 90137b5
Showing
3 changed files
with
372 additions
and
12 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,282 @@ | ||
'''This code refers to the official PyTorch ImageNet example: https://github.com/pytorch/examples/tree/master/imagenet. | ||
All copyrights to them! | ||
''' | ||
import argparse | ||
import os | ||
import random | ||
import shutil | ||
import time | ||
import warnings | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.nn.parallel | ||
import torch.backends.cudnn as cudnn | ||
import torch.distributed as dist | ||
import torch.optim | ||
import torch.multiprocessing as mp | ||
import torch.utils.data | ||
import torch.utils.data.distributed | ||
import torchvision.transforms as transforms | ||
import torchvision.datasets as datasets | ||
import torchvision.models as models | ||
|
||
model_names = sorted(name for name in models.__dict__ | ||
if name.islower() and not name.startswith("__") | ||
and callable(models.__dict__[name])) | ||
|
||
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') | ||
parser.add_argument('data', metavar='DIR', | ||
help='path to dataset') | ||
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18', | ||
choices=model_names, | ||
help='model architecture: ' + | ||
' | '.join(model_names) + | ||
' (default: resnet18)') | ||
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', | ||
help='number of data loading workers (default: 4)') | ||
parser.add_argument('--epochs', default=90, type=int, metavar='N', | ||
help='number of total epochs to run') | ||
parser.add_argument('--start-epoch', default=0, type=int, metavar='N', | ||
help='manual epoch number (useful on restarts)') | ||
parser.add_argument('-b', '--batch-size', default=256, type=int, | ||
metavar='N', | ||
help='mini-batch size (default: 256), this is the total ' | ||
'batch size of all GPUs on the current node when ' | ||
'using Data Parallel or Distributed Data Parallel') | ||
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, | ||
metavar='LR', help='initial learning rate', dest='lr') | ||
parser.add_argument('--momentum', default=0.9, type=float, metavar='M', | ||
help='momentum') | ||
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float, | ||
metavar='W', help='weight decay (default: 1e-4)', | ||
dest='weight_decay') | ||
parser.add_argument('-p', '--print-freq', default=10, type=int, | ||
metavar='N', help='print frequency (default: 10)') | ||
parser.add_argument('--resume', default='', type=str, metavar='PATH', | ||
help='path to latest checkpoint (default: none)') | ||
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', | ||
help='evaluate model on validation set') | ||
parser.add_argument('--pretrained', dest='pretrained', action='store_true', | ||
help='use pre-trained model') | ||
parser.add_argument('--world-size', default=-1, type=int, | ||
help='number of nodes for distributed training') | ||
parser.add_argument('--rank', default=-1, type=int, | ||
help='node rank for distributed training') | ||
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str, | ||
help='url used to set up distributed training') | ||
parser.add_argument('--dist-backend', default='nccl', type=str, | ||
help='distributed backend') | ||
parser.add_argument('--seed', default=None, type=int, | ||
help='seed for initializing training. ') | ||
parser.add_argument('--gpu', default=None, type=int, | ||
help='GPU id to use.') | ||
parser.add_argument('--multiprocessing-distributed', action='store_true', | ||
help='Use multi-processing distributed training to launch ' | ||
'N processes per node, which has N GPUs. This is the ' | ||
'fastest way to use PyTorch for either single node or ' | ||
'multi node data parallel training') | ||
parser.add_argument('--pretrained_weights', type=str, | ||
help='use pre-trained model') | ||
best_acc1 = 0 | ||
|
||
|
||
def main(): | ||
args = parser.parse_args() | ||
|
||
if args.seed is not None: | ||
random.seed(args.seed) | ||
torch.manual_seed(args.seed) | ||
cudnn.deterministic = True | ||
warnings.warn('You have chosen to seed training. ' | ||
'This will turn on the CUDNN deterministic setting, ' | ||
'which can slow down your training considerably! ' | ||
'You may see unexpected behavior when restarting ' | ||
'from checkpoints.') | ||
|
||
if args.gpu is not None: | ||
warnings.warn('You have chosen a specific GPU. This will completely ' | ||
'disable data parallelism.') | ||
|
||
if args.dist_url == "env://" and args.world_size == -1: | ||
args.world_size = int(os.environ["WORLD_SIZE"]) | ||
|
||
args.distributed = args.world_size > 1 or args.multiprocessing_distributed | ||
|
||
ngpus_per_node = torch.cuda.device_count() | ||
if args.multiprocessing_distributed: | ||
# Since we have ngpus_per_node processes per node, the total world_size | ||
# needs to be adjusted accordingly | ||
args.world_size = ngpus_per_node * args.world_size | ||
# Use torch.multiprocessing.spawn to launch distributed processes: the | ||
# main_worker process function | ||
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args)) | ||
else: | ||
# Simply call main_worker function | ||
main_worker(args.gpu, ngpus_per_node, args) | ||
|
||
|
||
def main_worker(gpu, ngpus_per_node, args): | ||
global best_acc1 | ||
args.gpu = gpu | ||
|
||
if args.gpu is not None: | ||
print("Use GPU: {} for training".format(args.gpu)) | ||
|
||
if args.distributed: | ||
if args.dist_url == "env://" and args.rank == -1: | ||
args.rank = int(os.environ["RANK"]) | ||
if args.multiprocessing_distributed: | ||
# For multiprocessing distributed training, rank needs to be the | ||
# global rank among all the processes | ||
args.rank = args.rank * ngpus_per_node + gpu | ||
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url, | ||
world_size=args.world_size, rank=args.rank) | ||
|
||
# define loss function (criterion) and optimizer | ||
criterion = nn.CrossEntropyLoss().cuda(args.gpu) | ||
|
||
cudnn.benchmark = True | ||
|
||
# load pruned models | ||
ckpt = torch.load(args.pretrained_weights) | ||
model = ckpt['model'] | ||
state_dict = ckpt['state_dict'] | ||
model.load_state_dict(state_dict) | ||
print(f'Load pruned model weights successfully! Arch: {ckpt["arch"]}') | ||
|
||
# Data loading code | ||
traindir = os.path.join(args.data, 'train') | ||
valdir = os.path.join(args.data, 'val') | ||
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], | ||
std=[0.229, 0.224, 0.225]) | ||
val_loader = torch.utils.data.DataLoader( | ||
datasets.ImageFolder(valdir, transforms.Compose([ | ||
transforms.Resize(256), | ||
transforms.CenterCrop(224), | ||
transforms.ToTensor(), | ||
normalize, | ||
])), | ||
batch_size=args.batch_size, shuffle=False, | ||
num_workers=args.workers, pin_memory=True) | ||
|
||
validate(val_loader, model, criterion, args) | ||
|
||
def validate(val_loader, model, criterion, args): | ||
batch_time = AverageMeter('Time', ':6.3f') | ||
losses = AverageMeter('Loss', ':.4e') | ||
top1 = AverageMeter('Acc@1', ':6.2f') | ||
top5 = AverageMeter('Acc@5', ':6.2f') | ||
progress = ProgressMeter( | ||
len(val_loader), | ||
[batch_time, losses, top1, top5], | ||
prefix='Test: ') | ||
|
||
# switch to evaluate mode | ||
model.eval() | ||
|
||
with torch.no_grad(): | ||
end = time.time() | ||
for i, (images, target) in enumerate(val_loader): | ||
if args.gpu is not None: | ||
images = images.cuda(args.gpu, non_blocking=True) | ||
if torch.cuda.is_available(): | ||
target = target.cuda(args.gpu, non_blocking=True) | ||
|
||
# compute output | ||
output = model(images) | ||
loss = criterion(output, target) | ||
|
||
# measure accuracy and record loss | ||
acc1, acc5 = accuracy(output, target, topk=(1, 5)) | ||
losses.update(loss.item(), images.size(0)) | ||
top1.update(acc1[0], images.size(0)) | ||
top5.update(acc5[0], images.size(0)) | ||
|
||
# measure elapsed time | ||
batch_time.update(time.time() - end) | ||
end = time.time() | ||
|
||
if i % args.print_freq == 0: | ||
progress.display(i) | ||
|
||
# TODO: this should also be done with the ProgressMeter | ||
print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}' | ||
.format(top1=top1, top5=top5)) | ||
|
||
return top1.avg | ||
|
||
|
||
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'): | ||
torch.save(state, filename) | ||
if is_best: | ||
shutil.copyfile(filename, 'model_best.pth.tar') | ||
|
||
|
||
class AverageMeter(object): | ||
"""Computes and stores the average and current value""" | ||
def __init__(self, name, fmt=':f'): | ||
self.name = name | ||
self.fmt = fmt | ||
self.reset() | ||
|
||
def reset(self): | ||
self.val = 0 | ||
self.avg = 0 | ||
self.sum = 0 | ||
self.count = 0 | ||
|
||
def update(self, val, n=1): | ||
self.val = val | ||
self.sum += val * n | ||
self.count += n | ||
self.avg = self.sum / self.count | ||
|
||
def __str__(self): | ||
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' | ||
return fmtstr.format(**self.__dict__) | ||
|
||
|
||
class ProgressMeter(object): | ||
def __init__(self, num_batches, meters, prefix=""): | ||
self.batch_fmtstr = self._get_batch_fmtstr(num_batches) | ||
self.meters = meters | ||
self.prefix = prefix | ||
|
||
def display(self, batch): | ||
entries = [self.prefix + self.batch_fmtstr.format(batch)] | ||
entries += [str(meter) for meter in self.meters] | ||
print('\t'.join(entries)) | ||
|
||
def _get_batch_fmtstr(self, num_batches): | ||
num_digits = len(str(num_batches // 1)) | ||
fmt = '{:' + str(num_digits) + 'd}' | ||
return '[' + fmt + '/' + fmt.format(num_batches) + ']' | ||
|
||
|
||
def adjust_learning_rate(optimizer, epoch, args): | ||
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" | ||
lr = args.lr * (0.1 ** (epoch // 30)) | ||
for param_group in optimizer.param_groups: | ||
param_group['lr'] = lr | ||
|
||
|
||
def accuracy(output, target, topk=(1,)): | ||
"""Computes the accuracy over the k top predictions for the specified values of k""" | ||
with torch.no_grad(): | ||
maxk = max(topk) | ||
batch_size = target.size(0) | ||
|
||
_, pred = output.topk(maxk, 1, True, True) | ||
pred = pred.t() | ||
correct = pred.eq(target.view(1, -1).expand_as(pred)) | ||
|
||
res = [] | ||
for k in topk: | ||
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True) | ||
res.append(correct_k.mul_(100.0 / batch_size)) | ||
return res | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
Oops, something went wrong.