Skip to content

MolloiLab/Hausdorff-Loss-GPU

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 

Repository files navigation

Hausdorff-Loss-GPU

In this package, you can calculate hausdorff distance loss in GPU easily. Exampe: Multiple classes example:

x = torch.rand(2,10,32,32).cuda()
y = torch.randint(0, 10, (2, 1, 32, 32)).cuda()
loss = HD_loss(apply_nonlin=None)
res = loss(x, y)
print(res)
import torch.nn as nn
softmax = nn.Softmax(dim=1)
x = torch.rand(2, 10, 32, 32, 32).cuda()
y = torch.randint(0, 10, (2, 1, 32, 32, 32)).cuda()
loss = HD_loss(apply_nonlin=softmax, alpha = 2)
res = loss(x, y)
print(res)

Binary example:

import torch.nn as nn
sigmoid = nn.Sigmoid()
x = torch.rand(2, 1, 32, 32, 32).cuda()
y = torch.randint(0, 2, (2, 1, 32, 32, 32)).cuda()
loss = HD_loss(apply_nonlin=sigmoid, alpha = 2)
res = loss(x, y)
print(res)

You can add parameter for alpha. If you do this, the function will choose the power for Hausdorff distance. You can substitude HD_loss with HD_ce_loss, which is based on distance weighted cross entropy loss. You can install it through:

pip install git+https://github.com/Qiyu-Zh/Hausdorff-Loss-GPU.git

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages