Skip to content

Commit

Permalink
Fix dimensional rescaling in predict_MEKE
Browse files Browse the repository at this point in the history
  Refactored predict_MEKE() to include two missing dimensional rescaling factors
and correct a third and to clearly indicate the units and the nature of the
variables where they are being used, in coordination with Andrew Shao.  Some
white spacing around semicolons in the same MOM_MEKE file was also modified to
follow the patterns used elsewhere in the MOM6 code.  All answers are bitwise
identical in cases that do not use dimensional rescaling.
  • Loading branch information
Hallberg-NOAA committed Jan 13, 2025
1 parent 7a45c61 commit 30df138
Showing 1 changed file with 40 additions and 26 deletions.
66 changes: 40 additions & 26 deletions src/parameterizations/lateral/MOM_MEKE.F90
Original file line number Diff line number Diff line change
Expand Up @@ -855,13 +855,13 @@ subroutine step_forward_MEKE(MEKE, h, SN_u, SN_v, visc, dt, G, GV, US, CS, hu, h
call time_interp_external(CS%eke_handle, Time, data_eke, scale=US%m_s_to_L_T**2)
do j=js,je ; do i=is,ie
MEKE%MEKE(i,j) = data_eke(i,j) * G%mask2dT(i,j)
enddo; enddo
enddo ; enddo
call MEKE_lengthScales(CS, MEKE, G, GV, US, SN_u, SN_v, MEKE%MEKE, depth_tot, bottomFac2, barotrFac2, LmixScale)
case(EKE_DBCLIENT)
call pass_vector(u, v, G%Domain)
call MEKE_lengthScales(CS, MEKE, G, GV, US, SN_u, SN_v, MEKE%MEKE, depth_tot, bottomFac2, barotrFac2, LmixScale)
call ML_MEKE_calculate_features(G, GV, US, CS, MEKE%Rd_dx_h, u, v, tv, h, dt, features_array)
call predict_MEKE(G, CS, SIZE(h), Time, features_array, MEKE%MEKE)
call predict_MEKE(G, US, CS, SIZE(h), Time, features_array, MEKE%MEKE)
case default
call MOM_error(FATAL,"Invalid method specified for calculating EKE")
end select
Expand Down Expand Up @@ -1003,7 +1003,7 @@ subroutine MEKE_equilibrium(CS, MEKE, G, GV, US, SN_u, SN_v, drag_rate_visc, I_m
real :: ldamping ! The MEKE damping rate [T-1 ~> s-1].
real :: EKE, EKEmin, EKEmax, EKEerr ! [L2 T-2 ~> m2 s-2]
real :: resid, ResMin, ResMax ! Residuals [L2 T-3 ~> W kg-1]
real :: FatH ! Coriolis parameter at h points; to compute topographic beta [T-1 ~> s-1]
real :: FatH ! Coriolis parameter at h points, used to compute topographic beta [T-1 ~> s-1]
real :: beta_topo_x, beta_topo_y ! Topographic PV gradients in x and y [T-1 L-1 ~> s-1 m-1]
real :: h_neglect ! A negligible thickness [H ~> m or kg m-2]
integer :: i, j, is, ie, js, je, n1, n2
Expand Down Expand Up @@ -1770,7 +1770,7 @@ subroutine ML_MEKE_init(diag, G, US, Time, param_file, dbcomms_CS, CS)
"Filename of the a saved pyTorch model to use", fail_if_missing = .true.)
call get_param(param_file, mdl, "EKE_MAX", CS%eke_max, &
"Maximum value of EKE allowed when inferring EKE", &
units="m2 s-2", default=2., scale=US%L_T_to_m_s**2)
units="m2 s-2", default=2., scale=US%m_s_to_L_T**2)

! Set the machine learning model
if (dbcomms_CS%colocated) then
Expand Down Expand Up @@ -1855,22 +1855,22 @@ subroutine ML_MEKE_calculate_features(G, GV, US, CS, Rd_dx_h, u, v, tv, h, dt, f

! Calculate various features for used to infer eddy kinetic energy
! Linear interpolation to estimate thickness at a velocity points
do k=1,nz; do j=js-1,je+1; do i=is-1,ie+1
do k=1,nz ; do j=js-1,je+1 ; do i=is-1,ie+1
h_u(I,j,k) = 0.5*(h(i,j,k)*G%mask2dT(i,j) + h(i+1,j,k)*G%mask2dT(i+1,j)) + GV%Angstrom_H
h_v(i,J,k) = 0.5*(h(i,j,k)*G%mask2dT(i,j) + h(i,j+1,k)*G%mask2dT(i,j+1)) + GV%Angstrom_H
enddo; enddo; enddo;
enddo ; enddo ; enddo
call find_eta(h, tv, G, GV, US, e, halo_size=2)
! Note the hard-coded dimenisional constant in the following line.
call calc_isoneutral_slopes(G, GV, US, h, e, tv, dt*1.e-7*GV%m2_s_to_HZ_T, .false., slope_x, slope_y)
call pass_vector(slope_x, slope_y, G%Domain)
do j=js-1,je+1; do i=is-1,ie+1
do j=js-1,je+1 ; do i=is-1,ie+1
slope_x_vert_avg(I,j) = vertical_average_interface(slope_x(i,j,:), h_u(i,j,:), GV%H_subroundoff)
slope_y_vert_avg(i,J) = vertical_average_interface(slope_y(i,j,:), h_v(i,j,:), GV%H_subroundoff)
enddo; enddo
enddo ; enddo
slope_z(:,:) = 0.

call pass_vector(slope_x_vert_avg, slope_y_vert_avg, G%Domain)
do j=js,je; do i=is,ie
do j=js,je ; do i=is,ie
! Calculate weights for interpolation from velocity points to h points
sum_area = G%areaCu(I-1,j) + G%areaCu(I,j)
if (sum_area>0.0) then
Expand Down Expand Up @@ -1900,7 +1900,7 @@ subroutine ML_MEKE_calculate_features(G, GV, US, CS, Rd_dx_h, u, v, tv, h, dt, f
slope_z(i,j) = sqrt(slope_t*slope_t)
slope_t = slope_y_vert_avg(i,J)*a_n+slope_y_vert_avg(i,J-1)*a_s
slope_z(i,j) = 0.5*(slope_z(i,j) + sqrt(slope_t*slope_t))*G%mask2dT(i,j)
enddo; enddo
enddo ; enddo
call pass_var(slope_z, G%Domain)

! Calculate relative vorticity
Expand All @@ -1909,11 +1909,11 @@ subroutine ML_MEKE_calculate_features(G, GV, US, CS, Rd_dx_h, u, v, tv, h, dt, f
dudy = ((u(I,j+1,1)*G%dxCu(I,j+1)) - (u(I,j,1)*G%dxCu(I,j)))
! Assumed no slip
rv_z(I,J) = (2.0-G%mask2dBu(I,J)) * (dvdx - dudy) * G%IareaBu(I,J)
enddo; enddo
enddo ; enddo
! Interpolate RV to t-point, revisit this calculation to include metrics
do j=js,je; do i=is,ie
do j=js,je ; do i=is,ie
rv_z_t(i,j) = 0.25*(rv_z(i-1,j) + rv_z(i,j) + rv_z(i-1,j-1) + rv_z(i,j-1))
enddo; enddo
enddo ; enddo


! Construct the feature array
Expand All @@ -1930,8 +1930,9 @@ subroutine ML_MEKE_calculate_features(G, GV, US, CS, Rd_dx_h, u, v, tv, h, dt, f
end subroutine ML_MEKE_calculate_features

!> Use the machine learning interface to predict EKE
subroutine predict_MEKE(G, CS, npts, Time, features_array, MEKE)
subroutine predict_MEKE(G, US, CS, npts, Time, features_array, MEKE)
type(ocean_grid_type), intent(inout) :: G !< Ocean grid
type(unit_scale_type), intent(in) :: US !< A dimensional unit scaling type
type(MEKE_CS), intent(in ) :: CS !< Control structure for MEKE
integer, intent(in ) :: npts !< Number of T-grid cells on the local
!! domain
Expand All @@ -1941,13 +1942,18 @@ subroutine predict_MEKE(G, CS, npts, Time, features_array, MEKE)
!! learning inference, with different units
!! for the various subarrays [various]
real, dimension(SZI_(G),SZJ_(G)), intent( out) :: MEKE !< Eddy kinetic energy [L2 T-2 ~> m2 s-2]

! Local variables
integer :: db_return_code
character(len=255), dimension(1) :: model_out, model_in
character(len=255) :: time_suffix
real(kind=real32), dimension(SIZE(MEKE)) :: MEKE_vec ! A one-dimensional array of eddy kinetic
! energy [L2 T-2 ~> m2 s-2]

real(kind=real32), dimension(SIZE(MEKE)) :: MEKE_vec ! A one-dimensional array of the natural log of eddy kinetic
! energy in mks units [m2 s-2]
real, dimension(size(MEKE,1),size(MEKE,2)) :: ln_MEKE ! the natural log of eddy kinetic energy
! in mks units [m2 s-2]
real, dimension(size(MEKE,1),size(MEKE,2)) :: MEKE_mks ! The eddy kinetic energy in mks units [m2 s-2]
integer :: i, j, is, ie, js, je

is = G%isc ; ie = G%iec ; js = G%jsc ; je = G%jec
!> Use the database client to call a machine learning model to predict eddy kinetic energy
call cpu_clock_begin(CS%id_put_tensor)
Expand All @@ -1967,18 +1973,26 @@ subroutine predict_MEKE(G, CS, npts, Time, features_array, MEKE)
db_return_code = CS%client%unpack_tensor( model_out(1), MEKE_vec, shape(MEKE_vec) )
call cpu_clock_end(CS%id_unpack_tensor)

!### Does MEKE_vec need to be rescaled from [m2 s-2] to [L2 T-2 ~> m2 s-2] by
! multiplying MEKE_vec by US%m_s_to_L_T**2 here?
MEKE = reshape(MEKE_vec, shape(MEKE))
do j=js,je; do i=is,ie
MEKE(i,j) = MIN(MAX(exp(MEKE(i,j)),0.),CS%eke_max)
enddo; enddo
call pass_var(MEKE,G%Domain)
ln_MEKE = reshape(MEKE_vec, shape(MEKE))
! Zero out the halos. These will usually be reset by the pass_var in a few lines.
MEKE_mks(:,:) = 0.0
do j=js,je ; do i=is,ie
MEKE_mks(i,j) = MIN(exp(ln_MEKE(i,j)), US%L_T_to_m_s**2*CS%eke_max)
enddo ; enddo
call pass_var(MEKE_mks, G%Domain, halo=1)

if (CS%online_analysis) then
write(time_suffix,"(F16.0)") time_type_to_real(Time)
db_return_code = CS%client%put_tensor(trim("EKE_")//trim(adjustl(time_suffix))//CS%key_suffix, MEKE, shape(MEKE))
db_return_code = CS%client%put_tensor(trim("EKE_")//trim(adjustl(time_suffix))//CS%key_suffix, &
MEKE_mks, shape(MEKE))
endif

! Copy MEKE_mks into the argument in rescaled units.
! MEKE(:,:) = 0.0 ! This would fill in the wider halos of this intent(out) array.
do j=js-1,je+1 ; do i=is-1,ie+1
MEKE(i,j) = US%m_s_to_L_T**2 * MEKE_mks(i,j)
enddo ; enddo

end subroutine predict_MEKE

!> Compute average of interface quantities weighted by the thickness of the surrounding layers
Expand Down Expand Up @@ -2023,7 +2037,7 @@ subroutine MEKE_alloc_register_restart(HI, US, param_file, MEKE, restart_CS)
integer :: isd, ied, jsd, jed

! Determine whether this module will be used
useMEKE = .false.; call read_param(param_file,"USE_MEKE",useMEKE)
useMEKE = .false. ; call read_param(param_file,"USE_MEKE",useMEKE)

! Read these parameters to determine what should be in the restarts
MEKE_GMcoeff = -1. ; call read_param(param_file,"MEKE_GMCOEFF",MEKE_GMcoeff)
Expand Down

0 comments on commit 30df138

Please sign in to comment.