Skip to content

Commit

Permalink
updated readme. tests checking all needed args are written to configs
Browse files Browse the repository at this point in the history
  • Loading branch information
bnb32 committed Jul 8, 2024
1 parent 9db5f7e commit 191d1ee
Show file tree
Hide file tree
Showing 7 changed files with 405 additions and 262 deletions.
211 changes: 108 additions & 103 deletions README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -52,21 +52,31 @@ All-Sky.
Installation
============

1. Use conda (anaconda or miniconda with python 3.9) to create an nsrdb
environment: ``conda create --name nsrdb python=3.9``
2. Activate your new conda env: ``conda activate nsrdb``
3. Follow the steps used in the `pytest actions <https://github.com/NREL/nsrdb/blob/main/.github/workflows/pull_request_tests.yml>`_.
Option 1: Install from PIP (recommended for analysts):
------------------------------------------------------

1) These actions refer to the required repositories needed to run all tests and the commands which should be run from the local location of those repositories
2) If you plan to run without MLClouds the step associated with this repository can be skipped.
4. Test your installation:
1. Create a new environment: ``conda create --name nsrdb python=3.9``

1) Start ipython and test the following import:
``from nsrdb.data_model import DataModel``
2) Navigate to the tests/ directory and run the command: ``pytest``
2. Activate environment: ``conda activate nsrdb``

3. Install nsrdb: ``pip install NREL-nsrdb``

Option 2: Clone repo (recommended for developers)
-------------------------------------------------

1. from home dir, ``git clone [email protected]:NREL/nsrdb.git``

2. Create ``nsrdb`` environment and install package
1) Create a conda env: ``conda create -n nsrdb``
2) Run the command: ``conda activate nsrdb``
3) ``cd`` into the repo cloned in 1.
4) Prior to running ``pip`` below, make sure the branch is correct (install
from main!)
5) Install ``nsrdb`` and its dependencies by running:
``pip install .`` (or ``pip install -e .`` if running a dev branch
or working on the source code)
7) *Optional*: Set up the pre-commit hooks with ``pip install pre-commit`` and ``pre-commit install``

5. If you are a developer, also run ``pre-commit install`` in the directory
containing .pre-commit-config.yaml.


NSRDB Versions
Expand All @@ -80,34 +90,77 @@ NSRDB Versions
- Effective Date
- Data Years*
- Notes
* - 1.0.0
- 2015
- 2005-2012
- Initial release of PSM v1 (no FARMS)

- Satellite Algorithm for Shortwave Radiation Budget (SASRAB) model
- MMAC model for clear sky condition
- The DNI for cloud scenes is then computed using the DISC model

* - 2.0.0
- 2016
- 1998-2015
- Initial release of PSM v2 (use of FARMS, downscaling of ancillary data
introduced to account for elevation, NSRDB website distribution
developed)

- Clear sky: REST2, Cloudy sky: NREL FARMS model and DISC model
- Climate Forecast System Reanalysis (CFSR) is used for ancillary data
- Monthly 0.5º aerosol optical depth (AOD) for 1998-2014 using
satellite and ground-based measurements. Monthly results interpolated
to daily 4-km AOD data. Daily data calibrated using ground
measurements to develop accurate AOD product.

* - 4.0.0
- 5/1/23
- 2022
- Integrated new FARMS-DNI model.
* - 3.2.3
- 4/13/23
- None
- Fixed MERRA interpolation issue #51 and deprecated python 3.7/3.8.
Added changes to accommodate pandas v2.0.0.
* - 3.2.2
- 2/25/2022
- 1998-2021
- Implemented a model for snowy albedo as a function of temperature from
MERRA2 based on the paper "A comparison of simulated and observed
fluctuations in summertime Arctic surface albedo" by Becky Ross and
John E. Walsh
* - 3.2.1
- 1/12/2021
- 2021
- Implemented an algorithm to re-map the parallax and shading corrected
cloud coordinates to the nominal GOES coordinate system. This fixes the
issue of PC cloud coordinates conflicting with clearsky coordinates.
This also fixes the strange pattern that was found in the long term
means generated from PC data.
* - 3.2.0
- 3/17/2021
- 2020
- Enabled cloud solar shading coordinate adjustment by default, enabled
MLClouds machine learning gap fill method for missing cloud properties
(cloud fill flag #7)
* - 3.1.2
- 6/8/2020
- 2020
- Added feature to adjust cloud coordinates based on solar position and
shading geometry.
* - 3.1.1
- 12/5/2019
- 2018+, TMY/TDY/TGY-2018
- Complete refactor of TMY processing code.
* - 3.1.0
- 9/23/2019
- 2018+
- Complete refactor of NSRDB processing code for NSRDB 2018
* - 3.0.6
- 4/23/2019
- 1998-2017
- Missing data for all cloud properties gap filled using heuristics method
* - 3.0.5
- 4/8/2019
- 1998-2017
- Cloud pressure attributes and scale/offset fixed for 2016 and 2017
* - 3.0.4
- 3/29/2019
- 1998-2017
- Aerosol optical depth patched with physical range from 0 to 3.2
* - 3.0.3
- 2/25/2019
- 1998-2017
- Wind data recomputed to fix corrupted data in western extent
* - 3.0.2
- 2/25/2019
- 1998-2017
- Air temperature data recomputed from MERRA2 with elevation correction
* - 3.0.1
- 2018
- 2017+
- Moved from timeshift of radiation to timeshift of cloud properties.
* - 3.0.0
- 2018
- 1998-2017
- Initial release of PSM v3

- Hourly AOD (1998-2016) from Modern-Era Retrospective analysis for
Research and Applications Version 2 (MERRA2).
- Snow-free Surface Albedo from MODIS (2001-2015), (MCD43GF CMG
Expand All @@ -120,74 +173,26 @@ NSRDB Versions
- Modern-Era Retrospective analysis for Research and Applications,
Version 2 (MERRA-2) is used for ancillary data (pressure, humidity,
wind speed etc.)
* - 2.0.0
- 2016
- 1998-2015
- Initial release of PSM v2 (use of FARMS, downscaling of ancillary data
introduced to account for elevation, NSRDB website distribution
developed)
- Clear sky: REST2, Cloudy sky: NREL FARMS model and DISC model
- Climate Forecast System Reanalysis (CFSR) is used for ancillary data
- Monthly 0.5º aerosol optical depth (AOD) for 1998-2014 using
satellite and ground-based measurements. Monthly results interpolated
to daily 4-km AOD data. Daily data calibrated using ground
measurements to develop accurate AOD product.
* - 1.0.0
- 2015
- 2005-2012
- Initial release of PSM v1 (no FARMS)
- Satellite Algorithm for Shortwave Radiation Budget (SASRAB) model
- MMAC model for clear sky condition
- The DNI for cloud scenes is then computed using the DISC model

* - 3.0.1
- 2018
- 2017+
- Moved from timeshift of radiation to timeshift of cloud properties.
* - 3.0.2
- 2/25/2019
- 1998-2017
- Air temperature data recomputed from MERRA2 with elevation correction
* - 3.0.3
- 2/25/2019
- 1998-2017
- Wind data recomputed to fix corrupted data in western extent
* - 3.0.4
- 3/29/2019
- 1998-2017
- Aerosol optical depth patched with physical range from 0 to 3.2
* - 3.0.5
- 4/8/2019
- 1998-2017
- Cloud pressure attributes and scale/offset fixed for 2016 and 2017
* - 3.0.6
- 4/23/2019
- 1998-2017
- Missing data for all cloud properties gap filled using heuristics method
* - 3.1.0
- 9/23/2019
- 2018+
- Complete refactor of NSRDB processing code for NSRDB 2018
* - 3.1.1
- 12/5/2019
- 2018+, TMY/TDY/TGY-2018
- Complete refactor of TMY processing code.
* - 3.1.2
- 6/8/2020
- 2020
- Added feature to adjust cloud coordinates based on solar position and
shading geometry.
* - 3.2.0
- 3/17/2021
- 2020
- Enabled cloud solar shading coordinate adjustment by default, enabled
MLClouds machine learning gap fill method for missing cloud properties
(cloud fill flag #7)
* - 3.2.1
- 1/12/2021
- 2021
- Implemented an algorithm to re-map the parallax and shading corrected
cloud coordinates to the nominal GOES coordinate system. This fixes the
issue of PC cloud coordinates conflicting with clearsky coordinates.
This also fixes the strange pattern that was found in the long term
means generated from PC data.
* - 3.2.2
- 2/25/2022
- 1998-2021
- Implemented a model for snowy albedo as a function of temperature from
MERRA2 based on the paper "A comparison of simulated and observed
fluctuations in summertime Arctic surface albedo" by Becky Ross and
John E. Walsh
* - 3.2.3
- 4/13/23
- None
- Fixed MERRA interpolation issue #51 and deprecated python 3.7/3.8.
Added changes to accommodate pandas v2.0.0.
* - 4.0.0
- 5/1/23
- 2022
- Integrated new FARMS-DNI model.

Recommended Citation
====================
Expand Down
32 changes: 16 additions & 16 deletions nsrdb/aggregation/aggregation.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,22 +36,22 @@
'tree_file': 'kdtree_nsrdb_meta_2km.pkl',
'meta_file': 'nsrdb_meta_2km.csv',
'spatial': '2km',
'temporal': '10min',
'freq': '10min',
},
'conus': {
'data_sub_dir': 'blended_conus',
'tree_file': 'kdtree_nsrdb_meta_2km_conus.pkl',
'meta_file': 'nsrdb_meta_2km_conus.csv',
'spatial': '2km',
'temporal': '5min',
'freq': '5min',
},
'final': {
'data_sub_dir': 'nsrdb_4km_30min',
'fout': 'nsrdb.h5',
'tree_file': 'kdtree_nsrdb_meta_4km.pkl',
'meta_file': 'nsrdb_meta_4km.csv',
'spatial': '4km',
'temporal': '30min',
'freq': '30min',
'source_priority': ['conus', 'full_disk'],
},
}
Expand All @@ -63,15 +63,15 @@
'tree_file': 'kdtree_nsrdb_meta_2km_east.pkl',
'meta_file': 'nsrdb_meta_2km_east.csv',
'spatial': '2km',
'temporal': '15min',
'freq': '15min',
},
'final': {
'data_sub_dir': 'wrf_9km',
'fout': 'wrf_9km_2018.h5',
'tree_file': 'kdtree_wrf_meta_9km.pkl',
'meta_file': 'wrf_meta_9km.csv',
'spatial': '9km',
'temporal': '15min',
'freq': '15min',
},
}

Expand All @@ -82,29 +82,29 @@
'tree_file': 'kdtree_nsrdb_meta_2km_full.pkl',
'meta_file': 'nsrdb_meta_2km_full.csv',
'spatial': '2km',
'temporal': '10min',
'freq': '10min',
},
'conus': {
'data_sub_dir': 'nsrdb_conus_east_2018_2km_5min/final/',
'tree_file': 'kdtree_nsrdb_meta_2km_conus.pkl',
'meta_file': 'nsrdb_meta_2km_conus.csv',
'spatial': '2km',
'temporal': '5min',
'freq': '5min',
},
'west': {
'data_sub_dir': 'nsrdb_west_full_2018_4km_30min/final/',
'tree_file': 'kdtree_nsrdb_meta_4km.pkl',
'meta_file': 'nsrdb_meta_4km.csv',
'spatial': '4km',
'temporal': '30min',
'freq': '30min',
},
'final': {
'data_sub_dir': 'nsrdb_4km_30min',
'fout': 'nsrdb_2018.h5',
'tree_file': 'kdtree_nsrdb_meta_4km.pkl',
'meta_file': 'nsrdb_meta_4km.csv',
'spatial': '4km',
'temporal': '30min',
'freq': '30min',
},
}

Expand All @@ -115,29 +115,29 @@
'tree_file': 'kdtree_nsrdb_meta_2km_east.pkl',
'meta_file': 'nsrdb_meta_2km_east.csv',
'spatial': '2km',
'temporal': '15min',
'freq': '15min',
},
'west': {
'data_sub_dir': 'west',
'tree_file': 'kdtree_west_psm_extent.pkl',
'meta_file': 'west_psm_extent.csv',
'spatial': '4km',
'temporal': '30min',
'freq': '30min',
},
'conus': {
'data_sub_dir': 'conus',
'tree_file': 'kdtree_nsrdb_meta_2km_conus.pkl',
'meta_file': 'nsrdb_meta_2km_conus.csv',
'spatial': '2km',
'temporal': '5min',
'freq': '5min',
},
'final': {
'data_sub_dir': 'nsrdb_4km_30min',
'fout': 'nsrdb_surfrad_2018.h5',
'tree_file': 'kdtree_surfrad_meta.pkl',
'meta_file': 'surfrad_meta.csv',
'spatial': '4km',
'temporal': '30min',
'freq': '30min',
},
}

Expand Down Expand Up @@ -964,7 +964,7 @@ def __init__(
def parse_data(self):
"""Parse the data input for several useful attributes."""
self.final_sres = self.data['final']['spatial']
self.final_tres = self.data['final']['temporal']
self.final_tres = self.data['final']['freq']
if 'fpath' in self.data['final']:
self.fout = self.data['final']['fpath']
else:
Expand All @@ -984,7 +984,7 @@ def parse_data(self):

def preflight(
self,
reqs=('data_sub_dir', 'tree_file', 'meta_file', 'spatial', 'temporal'),
reqs=('data_sub_dir', 'tree_file', 'meta_file', 'spatial', 'freq'),
):
"""Run validity checks on input data.
Expand Down Expand Up @@ -1357,7 +1357,7 @@ def add_temporal(self):
"""Get the temporal window sizes for all data sources."""
for source in self.data_sources:
w = self._get_temporal_w(
self.data[source]['temporal'], self.final_tres
self.data[source]['freq'], self.final_tres
)
self.data[source]['window'] = w
logger.info(
Expand Down
4 changes: 2 additions & 2 deletions nsrdb/cli.py
Original file line number Diff line number Diff line change
Expand Up @@ -194,6 +194,7 @@ def pipeline(ctx, config, cancel, monitor, background, verbose):
""" # noqa: D301

ctx.ensure_object(dict)
init_logger('gaps', log_level='DEBUG')
ctx.obj['VERBOSE'] = verbose or ctx.obj.get('VERBOSE', False)
gaps_pipeline(config, cancel, monitor, background)

Expand Down Expand Up @@ -855,8 +856,7 @@ def _run_or_collect_tmy(
'-c',
type=str,
required=True,
help='Path to config file with kwargs for TmyRunner.func(), where func '
'is "tmy", "tdy", or "tgy".',
help='Path to config file with kwargs for TmyRunner.tmy()',
)
@click.option(
'-v',
Expand Down
Loading

0 comments on commit 191d1ee

Please sign in to comment.