Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add XTransformer backend #716

Closed
wants to merge 12 commits into from
6 changes: 5 additions & 1 deletion Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@ FROM python:3.8-slim-bullseye
LABEL maintainer="Juho Inkinen <[email protected]>"
SHELL ["/bin/bash", "-c"]

ARG optional_dependencies="fasttext voikko fasttext nn omikuji yake spacy"
ARG optional_dependencies="fasttext voikko fasttext nn omikuji yake spacy pecos"
ARG POETRY_VIRTUALENVS_CREATE=false

# Install system dependencies needed at runtime:
Expand Down Expand Up @@ -37,6 +37,10 @@ RUN if [[ $optional_dependencies =~ "spacy" ]]; then \
python -m spacy download $model; \
done; \
fi
RUN if [[ $optional_dependencies =~ "pecos" ]]; then \
mkdir /.cache -m a=rwx; \
fi


# Second round of installation with the actual code:
COPY annif /Annif/annif
Expand Down
12 changes: 12 additions & 0 deletions annif/backend/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,6 +79,17 @@ def _tfidf():
return tfidf.TFIDFBackend


def _xtransformer():
try:
from . import xtransformer

return xtransformer.XTransformerBackend
except ImportError:
raise ValueError(
"XTransformer not available, not enabling XTransformer backend"
)


def _yake():
try:
from . import yake
Expand All @@ -101,6 +112,7 @@ def _yake():
"stwfsa": _stwfsa,
"svc": _svc,
"tfidf": _tfidf,
"xtransformer": _xtransformer,
"yake": _yake,
}

Expand Down
6 changes: 1 addition & 5 deletions annif/backend/fasttext.py
Original file line number Diff line number Diff line change
Expand Up @@ -112,11 +112,7 @@ def _create_model(self, params, jobs):
self.info("creating fastText model")
trainpath = os.path.join(self.datadir, self.TRAIN_FILE)
modelpath = os.path.join(self.datadir, self.MODEL_FILE)
params = {
param: self.FASTTEXT_PARAMS[param](val)
for param, val in params.items()
if param in self.FASTTEXT_PARAMS
}
params = annif.util.apply_param_parse_config(self.FASTTEXT_PARAMS, params)
if jobs != 0: # jobs set by user to non-default value
params["thread"] = jobs
self.debug("Model parameters: {}".format(params))
Expand Down
5 changes: 1 addition & 4 deletions annif/backend/omikuji.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
"""Annif backend using the Omikuji classifier"""

import os.path
import shutil

import omikuji

Expand Down Expand Up @@ -100,9 +99,7 @@ def _create_model(self, params, jobs):
hyper_param.collapse_every_n_layers = int(params["collapse_every_n_layers"])

self._model = omikuji.Model.train_on_data(train_path, hyper_param, jobs or None)
if os.path.exists(model_path):
shutil.rmtree(model_path)
self._model.save(os.path.join(self.datadir, self.MODEL_FILE))
annif.util.atomic_save_folder(self._model, model_path)

def _train(self, corpus, params, jobs=0):
if corpus != "cached":
Expand Down
8 changes: 2 additions & 6 deletions annif/backend/stwfsa.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@

from annif.exception import NotInitializedException, NotSupportedException
from annif.suggestion import ListSuggestionResult, SubjectSuggestion
from annif.util import atomic_save, boolean
from annif.util import apply_param_parse_config, atomic_save, boolean

from . import backend

Expand Down Expand Up @@ -95,11 +95,7 @@ def _load_data(self, corpus):

def _train(self, corpus, params, jobs=0):
X, y = self._load_data(corpus)
new_params = {
key: self.STWFSA_PARAMETERS[key](val)
for key, val in params.items()
if key in self.STWFSA_PARAMETERS
}
new_params = apply_param_parse_config(self.STWFSA_PARAMETERS, params)
p = StwfsapyPredictor(
graph=self.project.vocab.as_graph(),
langs=frozenset([params["language"]]),
Expand Down
237 changes: 237 additions & 0 deletions annif/backend/xtransformer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,237 @@
"""Annif backend using the transformer variant of pecos."""

import logging
import os.path as osp
from sys import stdout

import numpy as np
import scipy.sparse as sp
from pecos.utils.featurization.text.preprocess import Preprocessor
from pecos.xmc.xtransformer import matcher
from pecos.xmc.xtransformer.model import XTransformer
from pecos.xmc.xtransformer.module import MLProblemWithText

from annif.exception import NotInitializedException, NotSupportedException
from annif.suggestion import ListSuggestionResult, SubjectSuggestion
from annif.util import (
apply_param_parse_config,
atomic_save,
atomic_save_folder,
boolean,
)

from . import backend, mixins


class XTransformerBackend(mixins.TfidfVectorizerMixin, backend.AnnifBackend):
"""XTransformer based backend for Annif"""

name = "xtransformer"
needs_subject_index = True

_model = None

train_X_file = "xtransformer-train-X.npz"
train_y_file = "xtransformer-train-y.npz"
train_txt_file = "xtransformer-train-raw.txt"
model_folder = "xtransformer-model"

PARAM_CONFIG = {
"min_df": int,
"ngram": int,
"fix_clustering": boolean,
"nr_splits": int,
"min_codes": int,
"max_leaf_size": int,
"imbalanced_ratio": float,
"imbalanced_depth": int,
"max_match_clusters": int,
"do_fine_tune": boolean,
"model_shortcut": str,
"beam_size": int,
"limit": int,
"post_processor": str,
"negative_sampling": str,
"ensemble_method": str,
"threshold": float,
"loss_function": str,
"truncate_length": int,
"hidden_droput_prob": float,
"batch_size": int,
"gradient_accumulation_steps": int,
"learning_rate": float,
"weight_decay": float,
"adam_epsilon": float,
"num_train_epochs": int,
"max_steps": int,
"lr_schedule": str,
"warmup_steps": int,
"logging_steps": int,
"save_steps": int,
"max_active_matching_labels": int,
"max_num_labels_in_gpu": int,
"use_gpu": boolean,
"bootstrap_model": str,
}

DEFAULT_PARAMETERS = {
"min_df": 1,
"ngram": 1,
"fix_clustering": False,
"nr_splits": 16,
"min_codes": None,
"max_leaf_size": 100,
"imbalanced_ratio": 0.0,
"imbalanced_depth": 100,
"max_match_clusters": 32768,
"do_fine_tune": True,
"model_shortcut": "distilbert-base-multilingual-cased",
"beam_size": 20,
"limit": 100,
"post_processor": "sigmoid",
"negative_sampling": "tfn",
"ensemble_method": "transformer-only",
"threshold": 0.1,
"loss_function": "squared-hinge",
"truncate_length": 128,
"hidden_droput_prob": 0.1,
"batch_size": 32,
"gradient_accumulation_steps": 1,
"learning_rate": 1e-4,
"weight_decay": 0.0,
"adam_epsilon": 1e-8,
"num_train_epochs": 1,
"max_steps": 0,
"lr_schedule": "linear",
"warmup_steps": 0,
"logging_steps": 100,
"save_steps": 1000,
"max_active_matching_labels": None,
"max_num_labels_in_gpu": 65536,
"use_gpu": True,
"bootstrap_model": "linear",
}

def _initialize_model(self):
if self._model is None:
path = osp.join(self.datadir, self.model_folder)
self.debug("loading model from {}".format(path))
if osp.exists(path):
self._model = XTransformer.load(path)
else:
raise NotInitializedException(
"model {} not found".format(path), backend_id=self.backend_id
)

def initialize(self, parallel=False):
self.initialize_vectorizer()
self._initialize_model()

def default_params(self):
params = backend.AnnifBackend.DEFAULT_PARAMETERS.copy()
params.update(self.DEFAULT_PARAMETERS)
return params

def _create_train_files(self, veccorpus, corpus):
self.info("creating train file")
Xs = []
ys = []
txt_pth = osp.join(self.datadir, self.train_txt_file)
with open(txt_pth, "w", encoding="utf-8") as txt_file:
for doc, vector in zip(corpus.documents, veccorpus):
subject_set = doc.subject_set
if not (subject_set and doc.text):
continue # noqa
print(" ".join(doc.text.split()), file=txt_file)
Xs.append(sp.csr_matrix(vector, dtype=np.float32).sorted_indices())
ys.append(
sp.csr_matrix(
(
np.ones(len(subject_set)),
(np.zeros(len(subject_set)), [s for s in subject_set]),
),
shape=(1, len(self.project.subjects)),
dtype=np.float32,
).sorted_indices()
)
atomic_save(
sp.vstack(Xs, format="csr"),
self.datadir,
self.train_X_file,
method=lambda mtrx, target: sp.save_npz(target, mtrx, compressed=True),
)
atomic_save(
sp.vstack(ys, format="csr"),
self.datadir,
self.train_y_file,
method=lambda mtrx, target: sp.save_npz(target, mtrx, compressed=True),
)

def _create_model(self, params, jobs):
train_txts = Preprocessor.load_data_from_file(
osp.join(self.datadir, self.train_txt_file),
label_text_path=None,
text_pos=0,
)["corpus"]
train_X = sp.load_npz(osp.join(self.datadir, self.train_X_file))
train_y = sp.load_npz(osp.join(self.datadir, self.train_y_file))
model_path = osp.join(self.datadir, self.model_folder)
new_params = apply_param_parse_config(self.PARAM_CONFIG, self.params)
new_params["only_topk"] = new_params.pop("limit")
train_params = XTransformer.TrainParams.from_dict(
new_params, recursive=True
).to_dict()
pred_params = XTransformer.PredParams.from_dict(
new_params, recursive=True
).to_dict()

self.info("Start training")
# enable progress
matcher.LOGGER.setLevel(logging.INFO)
matcher.LOGGER.addHandler(logging.StreamHandler(stream=stdout))
self._model = XTransformer.train(
MLProblemWithText(train_txts, train_y, X_feat=train_X),
clustering=None,
val_prob=None,
train_params=train_params,
pred_params=pred_params,
beam_size=params["beam_size"],
steps_scale=None,
label_feat=None,
)
atomic_save_folder(self._model, model_path)

def _train(self, corpus, params, jobs=0):
if corpus == "cached":
self.info("Reusing cached training data from previous run.")
else:
if corpus.is_empty():
raise NotSupportedException("Cannot t project with no documents")
input = (doc.text for doc in corpus.documents)
vecparams = {
"min_df": int(params["min_df"]),
"tokenizer": self.project.analyzer.tokenize_words,
"ngram_range": (1, int(params["ngram"])),
}
veccorpus = self.create_vectorizer(input, vecparams)
self._create_train_files(veccorpus, corpus)
self._create_model(params, jobs)

def _suggest(self, text, params):
text = " ".join(text.split())
vector = self.vectorizer.transform([text])
if vector.nnz == 0: # All zero vector, empty result
return ListSuggestionResult([])
new_params = apply_param_parse_config(self.PARAM_CONFIG, params)
prediction = self._model.predict(
[text],
X_feat=vector.sorted_indices(),
batch_size=new_params["batch_size"],
use_gpu=False,
only_top_k=new_params["limit"],
post_processor=new_params["post_processor"],
)
results = []
for idx, score in zip(prediction.indices, prediction.data):
results.append(SubjectSuggestion(subject_id=idx, score=score))
return ListSuggestionResult(results)
Loading