-
Notifications
You must be signed in to change notification settings - Fork 61
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
210 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
from zeroband.optimizers.muon import Muon | ||
|
||
__all__ = ["Muon"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,207 @@ | ||
# credits to https://github.com/ethansmith2000/fsdp_optimizers/blob/main/muon.py | ||
|
||
import torch | ||
from typing import Generator | ||
from torch.distributed._tensor.api import ( | ||
DTensor, | ||
distribute_tensor, | ||
) # should be move to torch.distributed.tensor with torch 2.5.0 | ||
|
||
|
||
def to_local(x, keep_sharded=False): | ||
if isinstance(x, DTensor): | ||
meta = dict( | ||
device_mesh=x.device_mesh, | ||
placements=x.placements, | ||
shape=x.shape, | ||
stride=x.stride(), | ||
) | ||
if keep_sharded: | ||
return x.to_local(), meta | ||
else: | ||
return x.full_tensor(), meta | ||
|
||
return x, None | ||
|
||
|
||
def to_dist(x, **meta): | ||
# return DTensor.from_local(x, **meta) | ||
return distribute_tensor(x, device_mesh=meta["device_mesh"], placements=meta["placements"]) | ||
|
||
|
||
# @torch.compile | ||
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7): | ||
""" | ||
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a | ||
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose | ||
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at | ||
zero even beyond the point where the iteration no longer converges all the way to one everywhere | ||
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T | ||
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model | ||
performance at all relative to UV^T, where USV^T = G is the SVD. | ||
""" | ||
assert len(G.shape) == 2 | ||
a, b, c = (3.4445, -4.7750, 2.0315) | ||
X = G.bfloat16() | ||
X /= X.norm() + eps # ensure top singular value <= 1 | ||
if G.size(0) > G.size(1): | ||
X = X.T | ||
for _ in range(steps): | ||
A = X @ X.T | ||
B = b * A + c * A @ A | ||
X = a * X + B @ X | ||
if G.size(0) > G.size(1): | ||
X = X.T | ||
return X | ||
|
||
|
||
class Muon(torch.optim.Optimizer): | ||
""" | ||
Muon - MomentUm Orthogonalized by Newton-schulz | ||
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post- | ||
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal | ||
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has | ||
the advantage that it can be stably run in bfloat16 on the GPU. | ||
Some warnings: | ||
- We believe this optimizer is unlikely to work well for training with small batch size. | ||
- We believe it may not work well for finetuning pretrained models, but we haven't tested this. | ||
Arguments: | ||
muon_params: The parameters to be optimized by Muon. | ||
lr: The learning rate. The updates will have spectral norm of `lr`. (0.02 is a good default) | ||
momentum: The momentum used by the internal SGD. (0.95 is a good default) | ||
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended) | ||
ns_steps: The number of Newton-Schulz iterations to run. (6 is probably always enough) | ||
adamw_params: The parameters to be optimized by AdamW. Any parameters in `muon_params` which are | ||
{0, 1}-D or are detected as being the embed or lm_head will be optimized by AdamW as well. | ||
adamw_lr: The learning rate for the internal AdamW. | ||
adamw_betas: The betas for the internal AdamW. | ||
adamw_eps: The epsilon for the internal AdamW. | ||
adamw_wd: The weight decay for the internal AdamW. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
muon_params, | ||
lr=0.02, | ||
momentum=0.95, | ||
nesterov=True, | ||
ns_steps=6, | ||
adamw_params=None, | ||
adamw_lr=3e-4, | ||
adamw_betas=(0.95, 0.95), | ||
adamw_eps=1e-8, | ||
adamw_wd=0, | ||
): | ||
defaults = dict( | ||
lr=lr, | ||
momentum=momentum, | ||
nesterov=nesterov, | ||
ns_steps=ns_steps, | ||
adamw_lr_ratio=adamw_lr / lr, | ||
adamw_betas=adamw_betas, | ||
adamw_eps=adamw_eps, | ||
adamw_wd=adamw_wd, | ||
) | ||
|
||
# handle list of params or list of dicts | ||
if isinstance(muon_params, Generator): | ||
muon_params = list(muon_params) | ||
if isinstance(adamw_params, Generator): | ||
adamw_params = list(adamw_params) | ||
elif adamw_params is None: | ||
adamw_params = [] | ||
|
||
super().__init__([*muon_params, *adamw_params], defaults) | ||
|
||
# Sort parameters into those for which we will use Muon, and those for which we will not | ||
# we cant pickle booleans for saving, so we will use 1=True, 0=False | ||
def assign_muon(p): | ||
if p.ndim >= 2 and p.size(0) < 10000: | ||
self.state[p]["use_muon"] = 1 | ||
else: | ||
self.state[p]["use_muon"] = 0 | ||
|
||
if isinstance(muon_params[0], dict): | ||
for group in muon_params: | ||
for p in group["params"]: | ||
assign_muon(p) | ||
else: | ||
for p in muon_params: | ||
assign_muon(p) | ||
|
||
def assign_adamw(p): | ||
# Do not use Muon for parameters in adamw_params | ||
self.state[p]["use_muon"] = 0 | ||
|
||
if len(adamw_params) and isinstance(adamw_params[0], dict): | ||
for group in adamw_params: | ||
for p in group["params"]: | ||
assign_adamw(p) | ||
else: | ||
for p in adamw_params: | ||
assign_adamw(p) | ||
|
||
if torch.distributed.is_initialized(): | ||
self.world_size = torch.distributed.get_world_size() | ||
self.rank = torch.distributed.get_rank() | ||
else: | ||
self.world_size = 1 | ||
self.rank = 0 | ||
|
||
def step(self): | ||
for group in self.param_groups: | ||
lr = group["lr"] | ||
momentum = group["momentum"] | ||
for i, p in enumerate(group["params"]): | ||
if self.state[p]["use_muon"] == 1: | ||
g = p.grad | ||
if g is None: | ||
continue | ||
if g.ndim > 2: | ||
g = g.view(g.size(0), -1) | ||
state = self.state[p] | ||
if "momentum_buffer" not in state: | ||
state["momentum_buffer"] = torch.zeros_like(g) | ||
buf = state["momentum_buffer"] | ||
buf.mul_(momentum).add_(g) | ||
if group["nesterov"]: | ||
g = g.add(buf, alpha=momentum) | ||
|
||
meta = None | ||
if isinstance(g, DTensor): | ||
g, meta = to_local(g, keep_sharded=False) | ||
# gives NaNs when done with Dtensor, instead of throwing a typical op not supported error, quite sneaky | ||
g = zeropower_via_newtonschulz5(g, steps=group["ns_steps"]) | ||
if meta is not None: | ||
g = to_dist(g, **meta) | ||
g *= max(1, g.size(0) / g.size(1)) ** 0.5 | ||
|
||
g = g.view_as(p.data).type_as(p.data) | ||
p.data.add_(g, alpha=-lr) | ||
else: | ||
# these are all pointwise so we can stay in Dtensor | ||
g = p.grad | ||
if g is None: | ||
continue | ||
state = self.state[p] | ||
if "step" not in state: | ||
state["step"] = 0 | ||
state["moment1"] = torch.zeros_like(g) | ||
state["moment2"] = torch.zeros_like(g) | ||
state["step"] += 1 | ||
step = state["step"] | ||
buf1 = state["moment1"] | ||
buf2 = state["moment2"] | ||
buf1.lerp_(g, 1 - group["adamw_betas"][0]) | ||
buf2.lerp_(g.square(), 1 - group["adamw_betas"][1]) | ||
|
||
g = buf1 / (group["adamw_eps"] + buf2.sqrt()) | ||
|
||
bias_correction1 = 1 - group["adamw_betas"][0] ** step | ||
bias_correction2 = 1 - group["adamw_betas"][1] ** step | ||
scale = bias_correction1 / bias_correction2**0.5 | ||
p.data.mul_(1 - lr * group["adamw_wd"]) | ||
p.data.add_(g, alpha=-lr / scale) |