Skip to content

Commit

Permalink
fix black error
Browse files Browse the repository at this point in the history
Signed-off-by: Yiheng Wang <[email protected]>
  • Loading branch information
yiheng-wang-nv committed Jan 27, 2024
1 parent 87b0ffe commit 249eaa6
Show file tree
Hide file tree
Showing 6 changed files with 12 additions and 19 deletions.
6 changes: 3 additions & 3 deletions ci/unit_tests/test_spleen_deepedit_annotation.py
Original file line number Diff line number Diff line change
Expand Up @@ -124,9 +124,9 @@ def test_infer_config(self, override):
@parameterized.expand([TEST_CASE_2])
def test_infer_click_config(self, override):
override["dataset_dir"] = self.dataset_dir
override[
"dataset#data"
] = "$[{'image': i, 'background': [], 'spleen': [[6, 6, 6], [8, 8, 8]]} for i in @datalist]"
override["dataset#data"] = (
"$[{'image': i, 'background': [], 'spleen': [[6, 6, 6], [8, 8, 8]]} for i in @datalist]"
)
bundle_root = override["bundle_root"]
sys.path = [bundle_root] + sys.path

Expand Down
Original file line number Diff line number Diff line change
@@ -1,7 +1,8 @@
{
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
"version": "0.2.3",
"version": "0.2.4",
"changelog": {
"0.2.4": "fix black 24.1 format error",
"0.2.3": "update AddChanneld with EnsureChannelFirstd and remove meta_dict",
"0.2.2": "add name tag",
"0.2.1": "fix license Copyright error",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -37,9 +37,7 @@ def drop_block_2d(
total_size = w * h
clipped_block_size = min(block_size, min(w, h))
# seed_drop_rate, the gamma parameter
gamma = (
gamma_scale * drop_prob * total_size / clipped_block_size**2 / ((w - block_size + 1) * (h - block_size + 1))
)
gamma = gamma_scale * drop_prob * total_size / clipped_block_size**2 / ((w - block_size + 1) * (h - block_size + 1))

# Forces the block to be inside the feature map.
w_i, h_i = torch.meshgrid(torch.arange(w).to(x.device), torch.arange(h).to(x.device))
Expand Down Expand Up @@ -89,9 +87,7 @@ def drop_block_fast_2d(
b, c, h, w = x.shape
total_size = w * h
clipped_block_size = min(block_size, min(w, h))
gamma = (
gamma_scale * drop_prob * total_size / clipped_block_size**2 / ((w - block_size + 1) * (h - block_size + 1))
)
gamma = gamma_scale * drop_prob * total_size / clipped_block_size**2 / ((w - block_size + 1) * (h - block_size + 1))

block_mask = torch.empty_like(x).bernoulli_(gamma)
block_mask = F.max_pool2d(
Expand Down
3 changes: 1 addition & 2 deletions models/valve_landmarks/configs/metadata.json
Original file line number Diff line number Diff line change
@@ -1,8 +1,7 @@
{
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220729.json",
"version": "0.5.1",
"version": "0.5.0",
"changelog": {
"0.5.1": "test",
"0.5.0": "Fix transform usage",
"0.4.3": "README.md fix",
"0.4.2": "add name tag",
Expand Down
Original file line number Diff line number Diff line change
@@ -1,7 +1,8 @@
{
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
"version": "0.2.3",
"version": "0.2.4",
"changelog": {
"0.2.4": "fix black 24.1 format error",
"0.2.3": "fix PYTHONPATH in readme.md",
"0.2.2": "add name tag",
"0.2.1": "fix license Copyright error",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -37,9 +37,7 @@ def drop_block_2d(
total_size = w * h
clipped_block_size = min(block_size, min(w, h))
# seed_drop_rate, the gamma parameter
gamma = (
gamma_scale * drop_prob * total_size / clipped_block_size**2 / ((w - block_size + 1) * (h - block_size + 1))
)
gamma = gamma_scale * drop_prob * total_size / clipped_block_size**2 / ((w - block_size + 1) * (h - block_size + 1))

# Forces the block to be inside the feature map.
w_i, h_i = torch.meshgrid(torch.arange(w).to(x.device), torch.arange(h).to(x.device))
Expand Down Expand Up @@ -89,9 +87,7 @@ def drop_block_fast_2d(
b, c, h, w = x.shape
total_size = w * h
clipped_block_size = min(block_size, min(w, h))
gamma = (
gamma_scale * drop_prob * total_size / clipped_block_size**2 / ((w - block_size + 1) * (h - block_size + 1))
)
gamma = gamma_scale * drop_prob * total_size / clipped_block_size**2 / ((w - block_size + 1) * (h - block_size + 1))

block_mask = torch.empty_like(x).bernoulli_(gamma)
block_mask = F.max_pool2d(
Expand Down

0 comments on commit 249eaa6

Please sign in to comment.