Skip to content

Commit

Permalink
fix: correctly pass slice_size argument (#379)
Browse files Browse the repository at this point in the history
* fix: correctly pass `slice_size` argument

* fix: correctly use slice dim selection in iterate slices
  • Loading branch information
FabianHofmann authored Nov 15, 2024
1 parent 0b2a208 commit 04c9e52
Show file tree
Hide file tree
Showing 4 changed files with 30 additions and 17 deletions.
7 changes: 5 additions & 2 deletions doc/release_notes.rst
Original file line number Diff line number Diff line change
@@ -1,8 +1,11 @@
Release Notes
=============

.. Upcoming Version
.. ----------------
Upcoming Version
----------------

* Fix the `slice_size` argument in the `solve` function. The argument was not properly passed to the `to_file` function.
* Fix the slicing of constraints in case the term dimension is larger than the leading constraint coordinate dimension.

Version 0.4.0
--------------
Expand Down
8 changes: 7 additions & 1 deletion linopy/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -506,6 +506,11 @@ def iterate_slices(
if slice_dims is None:
slice_dims = list(getattr(ds, "coord_dims", ds.dims))

if not set(slice_dims).issubset(ds.dims):
raise ValueError(
"Invalid slice dimensions. Must be a subset of the dataset dimensions."
)

# Calculate the total number of elements in the dataset
size = np.prod([ds.sizes[dim] for dim in ds.dims], dtype=int)

Expand All @@ -517,7 +522,8 @@ def iterate_slices(
n_slices = max(size // slice_size, 1)

# leading dimension (the dimension with the largest size)
leading_dim = max(ds.sizes, key=ds.sizes.get) # type: ignore
sizes = {dim: ds.sizes[dim] for dim in slice_dims}
leading_dim = max(sizes, key=sizes.get) # type: ignore
size_of_leading_dim = ds.sizes[leading_dim]

if size_of_leading_dim < n_slices:
Expand Down
4 changes: 3 additions & 1 deletion linopy/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -1124,7 +1124,9 @@ def solve(
env=env,
)
else:
problem_fn = self.to_file(to_path(problem_fn), io_api)
problem_fn = self.to_file(
to_path(problem_fn), io_api, slice_size=slice_size
)
result = solver.solve_problem_from_file(
problem_fn=to_path(problem_fn),
solution_fn=to_path(solution_fn),
Expand Down
28 changes: 15 additions & 13 deletions test/test_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -475,11 +475,11 @@ def test_iterate_slices_basic():

def test_iterate_slices_with_exclude_dims():
ds = xr.Dataset(
{"var": (("x", "y"), np.random.rand(10, 10))}, # noqa: NPY002
coords={"x": np.arange(10), "y": np.arange(10)},
{"var": (("x", "y"), np.random.rand(10, 20))}, # noqa: NPY002
coords={"x": np.arange(10), "y": np.arange(20)},
)
slices = list(iterate_slices(ds, slice_size=20, slice_dims=["x"]))
assert len(slices) == 5
assert len(slices) == 10
for s in slices:
assert isinstance(s, xr.Dataset)
assert set(s.dims) == set(ds.dims)
Expand All @@ -499,11 +499,13 @@ def test_iterate_slices_large_max_size():

def test_iterate_slices_small_max_size():
ds = xr.Dataset(
{"var": (("x", "y"), np.random.rand(10, 10))}, # noqa: NPY002
coords={"x": np.arange(10), "y": np.arange(10)},
{"var": (("x", "y"), np.random.rand(10, 20))}, # noqa: NPY002
coords={"x": np.arange(10), "y": np.arange(20)},
)
slices = list(iterate_slices(ds, slice_size=8, slice_dims=[]))
assert len(slices) == 10
slices = list(iterate_slices(ds, slice_size=8, slice_dims=["x"]))
assert (
len(slices) == 10
) # goes to the smallest slice possible which is 1 for the x dimension
for s in slices:
assert isinstance(s, xr.Dataset)
assert set(s.dims) == set(ds.dims)
Expand All @@ -520,16 +522,16 @@ def test_iterate_slices_slice_size_none():
assert ds.equals(s)


def test_iterate_slices_no_slice_dims():
def test_iterate_slices_invalid_slice_dims():
ds = xr.Dataset(
{"var": (("x", "y"), np.random.rand(10, 10))}, # noqa: NPY002
coords={"x": np.arange(10), "y": np.arange(10)},
)
slices = list(iterate_slices(ds, slice_size=50, slice_dims=[]))
assert len(slices) == 2
for s in slices:
assert isinstance(s, xr.Dataset)
assert set(s.dims) == set(ds.dims)
with pytest.raises(ValueError):
list(iterate_slices(ds, slice_size=50, slice_dims=[]))

with pytest.raises(ValueError):
list(iterate_slices(ds, slice_size=50, slice_dims=["z"]))


def test_get_dims_with_index_levels():
Expand Down

0 comments on commit 04c9e52

Please sign in to comment.