-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #70 from RWTH-EBC/4-joss_paper-examples-ci
4 joss paper examples ci
- Loading branch information
Showing
8 changed files
with
165 additions
and
143 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
240 changes: 125 additions & 115 deletions
240
docs/jupyter_notebooks/e1_pull_DWD_historical_to_all_output_formats.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,116 +1,126 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "\"\"\"Contains examples\"\"\"\n\nimport datetime as dt\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "choose the project class according to the desired weather data origin\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "from aixweather.project_class import ProjectClassDWDHistorical\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "initiate the project class which contains or creates all variables and functions\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "DWD_pull_project = ProjectClassDWDHistorical(\n start=dt.datetime(2022, 1, 1),\n end=dt.datetime(2023, 1, 1),\n station=15000,\n # specify whether nan-values should be filled when exporting\n fillna=True,\n # define results path if desired\n abs_result_folder_path=None,\n)\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "import historical weather from the DWD open access database\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "DWD_pull_project.import_data()\nprint(\n f\"\\nHow the imported data looks like:\\n{DWD_pull_project.imported_data.head()}\\n\"\n)\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "convert this imported data to the core format\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "DWD_pull_project.data_2_core_data()\nprint(f\"\\nHow the core data looks like:\\n{DWD_pull_project.core_data.head()}\\n\")\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "you may also use data quality check utils, like:\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "from aixweather.data_quality_checks import plot_heatmap_missing_values\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "plot data quality\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "plot = plot_heatmap_missing_values(DWD_pull_project.core_data)\nplot.show()\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "convert this core data to an output data format of your choice\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "DWD_pull_project.core_2_csv()\nDWD_pull_project.core_2_json()\nDWD_pull_project.core_2_pickle()\nDWD_pull_project.core_2_mos()\nDWD_pull_project.core_2_epw()\n" | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.4" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "# AixWeather Tutorial\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "Enable logging, this is just get more feedback through the terminal\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "import logging\nlogging.basicConfig(level=\"DEBUG\")\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "Choose the project class according to the desired weather data origin.\nCheck the project classes file or the API documentation to see which classes are available.\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "from aixweather.project_class import ProjectClassDWDHistorical\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "Step 0: Initiate the project class which contains or creates all variables and functions.\nFor this, we use the datetime module to specify dates.\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "import datetime as dt\nDWD_pull_project = ProjectClassDWDHistorical(\n start=dt.datetime(2022, 1, 1),\n end=dt.datetime(2023, 1, 1),\n station=15000,\n # specify whether nan-values should be filled when exporting\n fillna=True,\n # define results path if desired\n abs_result_folder_path=None,\n)\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "Step 1: Import historical weather from the DWD open access database\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "DWD_pull_project.import_data()\nprint(\n f\"\\nHow the imported data looks like:\\n{DWD_pull_project.imported_data.head()}\\n\"\n)\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "Step 2: Convert this imported data to the core format\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "DWD_pull_project.data_2_core_data()\nprint(f\"\\nHow the core data looks like:\\n{DWD_pull_project.core_data.head()}\\n\")\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "you may also use data quality check utils, like:\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "from aixweather.data_quality_checks import plot_heatmap_missing_values\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "plot data quality\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "plot = plot_heatmap_missing_values(DWD_pull_project.core_data)\nplot.show()\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "Step 3: Convert this core data to an output data format of your choice\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "DWD_pull_project.core_2_csv()\nDWD_pull_project.core_2_json()\nDWD_pull_project.core_2_pickle()\nDWD_pull_project.core_2_mos()\nDWD_pull_project.core_2_epw()\n" | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.4" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,6 @@ | ||
.. mdinclude:: ../../examples/README.md | ||
.. mdinclude:: ../../examples/README.md | ||
|
||
.. toctree:: | ||
:maxdepth: 2 | ||
|
||
examples/e1_pull_DWD_historical_to_all_output_formats |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.