Skip to content

Commit

Permalink
Merge remote-tracking branch 'origin/4-joss_paper' into 4-joss_paper
Browse files Browse the repository at this point in the history
  • Loading branch information
Martin Rätz committed Dec 13, 2024
2 parents a61501b + 3d117c4 commit e70fb80
Showing 1 changed file with 125 additions and 125 deletions.
250 changes: 125 additions & 125 deletions docs/jupyter_notebooks/e1_pull_DWD_historical_to_all_output_formats.ipynb
Original file line number Diff line number Diff line change
@@ -1,126 +1,126 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": "# AixWeather Tutorial\n"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Enable logging, this is just get more feedback through the terminal\n"
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": "import logging\nlogging.basicConfig(level=\"DEBUG\")\n"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Choose the project class according to the desired weather data origin.\nCheck the project classes file or the API documentation to see which classes are available.\n"
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": "from aixweather.project_class import ProjectClassDWDHistorical\n"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Step 0: Initiate the project class which contains or creates all variables and functions.\nFor this, we use the datetime module to specify dates.\n"
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": "import datetime as dt\nDWD_pull_project = ProjectClassDWDHistorical(\n start=dt.datetime(2022, 1, 1),\n end=dt.datetime(2023, 1, 1),\n station=15000,\n # specify whether nan-values should be filled when exporting\n fillna=True,\n # define results path if desired\n abs_result_folder_path=None,\n)\n"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Step 1: Import historical weather from the DWD open access database\n"
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": "DWD_pull_project.import_data()\nprint(\n f\"\\nHow the imported data looks like:\\n{DWD_pull_project.imported_data.head()}\\n\"\n)\n"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Step 2: Convert this imported data to the core format\n"
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": "DWD_pull_project.data_2_core_data()\nprint(f\"\\nHow the core data looks like:\\n{DWD_pull_project.core_data.head()}\\n\")\n"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "you may also use data quality check utils, like:\n"
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": "from aixweather.data_quality_checks import plot_heatmap_missing_values\n"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "plot data quality\n"
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": "plot = plot_heatmap_missing_values(DWD_pull_project.core_data)\nplot.show()\n"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Step 3: Convert this core data to an output data format of your choice\n"
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": "DWD_pull_project.core_2_csv()\nDWD_pull_project.core_2_json()\nDWD_pull_project.core_2_pickle()\nDWD_pull_project.core_2_mos()\nDWD_pull_project.core_2_epw()\n"
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": "# AixWeather Tutorial\n"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Enable logging, this is just get more feedback through the terminal\n"
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": "import logging\nlogging.basicConfig(level=\"DEBUG\")\n"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Choose the project class according to the desired weather data origin.\nCheck the project classes file or the API documentation to see which classes are available.\n"
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": "from aixweather.project_class import ProjectClassDWDHistorical\n"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Step 0: Initiate the project class which contains or creates all variables and functions.\nFor this, we use the datetime module to specify dates.\n"
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": "import datetime as dt\nDWD_pull_project = ProjectClassDWDHistorical(\n start=dt.datetime(2022, 1, 1),\n end=dt.datetime(2023, 1, 1),\n station=15000,\n # specify whether nan-values should be filled when exporting\n fillna=True,\n # define results path if desired\n abs_result_folder_path=None,\n)\n"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Step 1: Import historical weather from the DWD open access database\n"
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": "DWD_pull_project.import_data()\nprint(\n f\"\\nHow the imported data looks like:\\n{DWD_pull_project.imported_data.head()}\\n\"\n)\n"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Step 2: Convert this imported data to the core format\n"
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": "DWD_pull_project.data_2_core_data()\nprint(f\"\\nHow the core data looks like:\\n{DWD_pull_project.core_data.head()}\\n\")\n"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "you may also use data quality check utils, like:\n"
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": "from aixweather.data_quality_checks import plot_heatmap_missing_values\n"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "plot data quality\n"
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": "plot = plot_heatmap_missing_values(DWD_pull_project.core_data)\nplot.show()\n"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Step 3: Convert this core data to an output data format of your choice\n"
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": "DWD_pull_project.core_2_csv()\nDWD_pull_project.core_2_json()\nDWD_pull_project.core_2_pickle()\nDWD_pull_project.core_2_mos()\nDWD_pull_project.core_2_epw()\n"
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

0 comments on commit e70fb80

Please sign in to comment.