This is the original implementation for wide-and-deep matching network (WDMN). [Response Ranking with Multi-Types of Deep Interactive Representations in Retrieval-based Dialogues.]
tensorflow/tensorflow:1.15.5-gpu-py3
- python==3.7.6
- numpy==1.18.1
- tensorflow-gpu==1.15.0
- Build directory structure
...$ mkdir WDMN && cd WDMN .../WDMN$ mkdir code data
- Download data and unzip it
.../WDMN$ unrar x dataset.rar data
Thank chunyuanY for providing the data.
- In case you cannot download that data, use this link instead (need not to unrar it)
- Set up the environment (see Requiments above)
- Clone this reposity and train WDMN
.../WDMN$ cd code .../WDMN/code$ git clone https://github.com/RayXu14/WDMN.git .../WDMN/code$ cd WDMN # (optional) modify run.sh to change the configuration .../WDMN/code/WDMN$ bash run.sh # please make sure the environment is set up properly
Dataset | R_2@1 | R_10@1 | R_10@2 | R_10@5 | MAP | MRR | P@1 |
---|---|---|---|---|---|---|---|
Ubuntu (Lowe et al., 2015) | 0.957 | 0.821 | 0.911 | 0.981 | - | - | - |
Douban (Wu et al., 2017) | - | 0.301 | 0.460 | 0.799 | 0.594 | 0.644 | 0.490 |
E-commerce (Zhang et al., 2018) | - | 0.669 | 0.831 | 0.956 | - | - | - |
The paper is published at TOIS, 2021 and will be presented at SIGIR, 2022.