Welcome to our hands-on workshop where you'll dive into the world of building RAG-based applications! In this workshop, you'll embark on a journey through below modules, each designed to equip you with the knowledge and skills to create your very own RAG chatbot application.
Module | Description | File |
---|---|---|
🔮 LLM Generation | Using LLM with prompt engineering to solve a specific use case. | 1_LLM_Generation.py |
📚 Vector Database | Creating a vector database from our knowledge base (PDFs) and the process of data ingestion. | 2_Vector_DB[qdrant].py |
🤖 RAG Chatbot | Implementing a chatbot using RAG with the vector database and LLM for response generation. | 3_RAG_Chatbot.py |
🔗 RAG & LangChain | Integrating LangChain library to enhance the RAG chatbot application. | 4_RAG_Chatbot_Langchain.py |
🦙 Ollama Chatbot | Utilizing an open-source LLM running on our machine for generative AI tasks. | 5_Ollama_Chatbot.py |
📈 Advanced RAG | Optimizing RAG with intent recognition, re-ranking, mmr. | 6_Advanced_RAG.py |
- Python 3.7 or above
- Get an Gemini API key
git clone https://github.com/SSK-14/RAG-Chatbot.git
If running for the first time,
- Create virtual environment
pip3 install virtualenv
python3 -m venv {your-venvname}
source {your-venvname}/bin/activate
- Install required libraries
pip3 install -r requirements.txt
Set your API keys in the .env
file by copying .env.tmpl
streamlit run 1_LLM_Generation.py
We will be using qdrant vector database
- Create a Cluster
- Get API key and cluster URL
First, download the latest Qdrant image from Dockerhub:
docker pull qdrant/qdrant
Then, run the service:
docker run -p 6333:6333 -p 6334:6334 \
-v $(pwd)/qdrant_storage:/qdrant/storage:z \
qdrant/qdrant