Skip to content

Commit

Permalink
Add the excludeUnmatchedFineGrainedNetwork parameter
Browse files Browse the repository at this point in the history
  • Loading branch information
Atry committed Jun 1, 2018
1 parent 10b34e4 commit 1753beb
Showing 1 changed file with 66 additions and 10 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -40,9 +40,9 @@ object benchmark {

@Threads(value = 1)
@State(Scope.Benchmark)
class FourLayer {
class BranchNetBenchmark {

@Param(Array("8"))
@Param(Array("8", "16"))
protected var batchSize: Int = _

@Param(Array("1", "2", "4"))
Expand All @@ -54,6 +54,9 @@ object benchmark {
@Param(Array("16", "8"))
protected var numberOfBranches: Int = _

@Param(Array("false", "true"))
protected var excludeUnmatchedFineGrainedNetwork: Boolean = _

private implicit var executionContext: ExecutionContextExecutorService = _

private lazy val batches = {
Expand Down Expand Up @@ -103,7 +106,7 @@ object benchmark {
}
}

val fineProbabilityModel = Seq.fill(Cifar100.NumberOfCoarseClasses)(new (INDArrayLayer => INDArrayLayer) {
val fineScoreModels = Seq.fill(Cifar100.NumberOfCoarseClasses)(new (INDArrayLayer => INDArrayLayer) {
object Dense2 extends (INDArrayLayer => INDArrayLayer) {

object Dense1 extends (INDArrayLayer => INDArrayLayer) {
Expand All @@ -127,24 +130,77 @@ object benchmark {
val bias = INDArrayWeight(Nd4j.randn(1, Cifar100.NumberOfFineClassesPerCoarseClass))

def apply(coarseFeatures: INDArrayLayer) = {
val scores = Dense2(coarseFeatures) dot weight + bias

val expScores = exp(scores)
expScores / expScores.sum(1)
Dense2(coarseFeatures) dot weight + bias
}
})

def loss(coarseLabel: Int, batch: Batch): DoubleLayer = {
// val fineProbabilityModel = Seq.fill(Cifar100.NumberOfCoarseClasses)(new (INDArrayLayer => INDArrayLayer) {
// object Dense2 extends (INDArrayLayer => INDArrayLayer) {
//
// object Dense1 extends (INDArrayLayer => INDArrayLayer) {
// val weight = INDArrayWeight(Nd4j.randn(numberOfHiddenFeatures, numberOfHiddenFeatures))
// val bias = INDArrayWeight(Nd4j.randn(1, numberOfHiddenFeatures))
//
// def apply(coarseFeatures: INDArrayLayer) = {
// max(coarseFeatures dot weight + bias, 0.0)
// }
// }
//
// val weight = INDArrayWeight(Nd4j.randn(numberOfHiddenFeatures, numberOfHiddenFeatures))
// val bias = INDArrayWeight(Nd4j.randn(1, numberOfHiddenFeatures))
//
// def apply(coarseFeatures: INDArrayLayer) = {
// max(Dense1(coarseFeatures) dot weight + bias, 0.0)
// }
// }
//
// val weight = INDArrayWeight(Nd4j.randn(numberOfHiddenFeatures, Cifar100.NumberOfFineClassesPerCoarseClass))
// val bias = INDArrayWeight(Nd4j.randn(1, Cifar100.NumberOfFineClassesPerCoarseClass))
//
// def apply(coarseFeatures: INDArrayLayer) = {
// val scores = Dense2(coarseFeatures) dot weight + bias
//
// val expScores = exp(scores)
// expScores / expScores.sum(1)
// }
// })

def loss(expectedCoarseLabel: Int, batch: Batch): DoubleLayer = {
def crossEntropy(prediction: INDArrayLayer, expectOutput: INDArray): DoubleLayer = {
-(hyperparameters.log(prediction) * expectOutput).mean
}

val Array(batchSize, width, height, channels) = batch.pixels.shape()
val coarseFeatures = CoarseFeatures(batch.pixels.reshape(batchSize, width * height * channels))
val coarseProbabilities = CoarseProbabilityModel(coarseFeatures)
val fineProbabilities = fineProbabilityModel(coarseLabel)(coarseFeatures)

crossEntropy(coarseProbabilities, batch.coarseClasses) + crossEntropy(fineProbabilities, batch.localFineClasses)
crossEntropy(coarseProbabilities, batch.coarseClasses) + {
if (excludeUnmatchedFineGrainedNetwork) {
val fineScores = fineScoreModels(expectedCoarseLabel)(coarseFeatures)
val expScores = exp(fineScores)
val fineProbabilities = expScores / expScores.sum(1)
crossEntropy(fineProbabilities, batch.localFineClasses)
} else {
val expScoresByCoarseLabel = for (coarseLabel <- 0 until Cifar100.NumberOfCoarseClasses) yield {
val fineScores = fineScoreModels(expectedCoarseLabel)(coarseFeatures)
exp(fineScores)
}
val expSum = expScoresByCoarseLabel.map(_.sum(1)).reduce(_ + _)
val lossPerCoarseLabel = for ((expScores, coarseLabel) <- expScoresByCoarseLabel.zipWithIndex) yield {
val fineProbabilities = expScores / expSum

crossEntropy(
fineProbabilities,
if (coarseLabel == expScoresByCoarseLabel) {
batch.localFineClasses
} else {
Nd4j.zeros(batchSize, Cifar100.NumberOfFineClassesPerCoarseClass)
}
)
}
lossPerCoarseLabel.reduce(_ + _)
}
}
}

def train(coarseLabel: Int, batch: Batch) = {
Expand Down

0 comments on commit 1753beb

Please sign in to comment.