-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathClassDefinitions.py
437 lines (428 loc) · 20.7 KB
/
ClassDefinitions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
# This file contains functions for defining the network formats
# Created by: Leonid Chindelevitch
# Last modified: January 30, 2017
from OutputProcessing import CreateSMatrix
from ModelProcessing import *
from Utilities import *
from Unrelated import *
from fractions import Fraction
from functools import reduce
zero, one = Fraction(0), Fraction(1)
UNBLOCKED, TOPO, IRREV, STOICH, SEMI, SUBSET = list(range(6))
SURVIVING, DEADEND, REDUNDANT = 0, 1, 6
class Network:
def __init__(self, species, metabolites, reactions, description = None):
self.species = species
self.metabolites = metabolites
self.reactions = reactions
self.compartments = sorted([x.compartment for x in self.metabolites])
self.Matrix = None
self.fullMatrix = None
self.reducedMatrix = None
self.reactionSubsets = None
self.biomassCoefficients = [zero] * len(self.reactions)
self.description = description
def createMatrices(self):
selfReacts = [reaction.pairs for reaction in self.reactions]
numReacts = len(self.reactions)
numMetabs = len(self.metabolites)
self.fullMatrix = CreateSMatrix(selfReacts, numMetabs)
intMetabs = [x for x in range(numMetabs) if not self.metabolites[x].external]
self.Matrix = [self.fullMatrix[x] for x in intMetabs]
def checkElementalBalance(self, excludeExchange = True):
allDescriptions = [x.species.description for x in self.metabolites]
allFormulas = [(y['formula'] if 'formula' in y.keys() else {}) for y in allDescriptions]
if excludeExchange:
ER = self.findExchangeReactions()
checkAtomicBalance(allFormulas, [x for i,x in enumerate(self.reactions) if i not in ER])
else:
checkAtomicBalance(allFormulas, self.reactions)
def updateReduction(self):
if self.reducedMatrix is not None:
print('Rerunning network reduction to update the reduced network.')
self.reduceNetwork('NewReduction.txt')
def reduceNetwork(self, filename = 'Reduction.txt'):
N = self.Matrix
Irr = self.findIrreversibleReactions()
reduction = reduceMatrix(N, Irr, filename)
self.applyReduction(reduction)
def applyReduction(self, reducedMatrix):
self.reducedMatrix = reducedMatrix[0]
irreversibles = reducedMatrix[1]
metabStatuses = reducedMatrix[2]
reactStatuses = reducedMatrix[3]
forwardOnly = reducedMatrix[4]
backwardOnly = reducedMatrix[5]
subsets = reducedMatrix[6]
internalMetabs = [x for x in self.metabolites if not x.external]
for i, metab in enumerate(internalMetabs):
metab.reductionStatus = metabStatuses[i]
self.reactionSubsets = []
anchor_to_subset = {}
for i, subset in enumerate(subsets):
anchor = subset[0][0]
anchor_to_subset[anchor] = subset
anchors = list(anchor_to_subset.keys())
index = 0
for i, reaction in enumerate(self.reactions):
reaction.reductionStatus = reactStatuses[i]
if reactStatuses[i] in [UNBLOCKED, SEMI]:
geneCombo = self.reactions[reaction.index].geneCombination
mult = one
if reactStatuses[i] == SEMI:
if i in backwardOnly:
mult = -mult
elif i not in forwardOnly:
print('Error: this should never happen!')
new_subset = Reaction_Subset([[reaction.index, mult]], index, not (index in irreversibles), geneCombo)
index += 1
self.reactionSubsets.append(new_subset)
elif reactStatuses[i] == SUBSET:
if i in anchors:
subset = anchor_to_subset[i]
geneCombo = reduce(lambda u, v: u.logicalAnd(v), [_f for _f in [self.reactions[x].geneCombination for x in [y[0] for y in subset]] if _f], CNF([]))
transformedSubset = [[y[0], y[1] * (1 - 2 * int(y[0] in backwardOnly))] for y in subset]
self.reactionSubsets.append(Reaction_Subset(transformedSubset, index, not (index in irreversibles), geneCombo))
index += 1
def checkReduced(self):
if self.reactionSubsets is None:
print('Error: the network has not been reduced yet!')
return False
else:
return True
def findInternalMetabolites(self):
Int = [i for i, m in enumerate(self.metabolites) if not m.external]
return Int
def convertToFullNumbering(self, metabs):
Int = self.findInternalMetabolites()
fullMetabs = [Int[x] for x in metabs]
return fullMetabs
def findIrreversibleReactions(self):
Irr = [i for i, r in enumerate(self.reactions) if not r.reversible]
return Irr
def translateToReduced(self, reactionList):
if self.checkReduced():
badReactions = [r for r in reactionList if self.reactions[r].reductionStatus in [TOPO, STOICH, IRREV]]
if len(badReactions):
print('Warning: not all reactions on the list have survived the reduction!')
reactionList = [r for r in reactionList if r not in badReactions]
L = len(reactionList)
translatedReactions = [-1] * L
count = 0
for ind, subset in enumerate(self.reactionSubsets):
if count == L:
break
for pair in subset.pairs:
if pair[0] in reactionList:
translatedReactions[reactionList.index(pair[0])] = ind
count += 1
if count == L:
break
return sorted(list(set(translatedReactions)))
def findExchangeReactions(self):
exchange = []
externalInds = [i for i, m in enumerate(self.metabolites) if m.external]
for ind, react in enumerate(self.reactions):
for pair in react.pairs:
if pair[0] in externalInds:
exchange.append(ind)
break
return exchange
def findExchangeReactionsReduced(self):
if self.checkReduced():
exchange = self.findExchangeReactions()
exchangeR = self.translateToReduced(exchange)
return exchangeR
def findTopoBlockedMetabolites(self):
return self.findMetabolites(Type = DEADEND)
def findMetabolites(self, Type):
if self.checkReduced():
found = [i for i, m in enumerate(self.metabolites) if m.reductionStatus == Type]
return found
def findTopoBlockedReactions(self):
return self.findReactions(Type = TOPO)
def findIrrevBlockedReactions(self):
return self.findReactions(Type = IRREV)
def findStoichBlockedReactions(self):
return self.findReactions(Type = STOICH)
def findSemiBlockedReactions(self):
return self.findReactions(Type = SEMI)
def findReactions(self, Type):
if self.checkReduced():
found = [i for i, r in enumerate(self.reactions) if r.reductionStatus == Type]
return found
def findBiomassReaction(self):
if sum(self.biomassCoefficients) == one and one in self.biomassCoefficients:
return self.biomassCoefficients.index(one)
else:
return -1
def findBiomassReactionReduced(self):
biomass = self.findBiomassReaction()
if biomass == -1:
print('Cannot do anything as there is no biomass reaction!')
return
Target = self.translateToReduced([biomass])
if not Target:
print('Cannot do anything as the biomass reaction is blocked!')
return
return Target[0]
def unblockBiomassReaction(self):
if self.checkReduced():
N = self.Matrix
Irr = self.findIrreversibleReactions()
growth = self.findBiomassReaction()
status = self.reactions[growth].reductionStatus
if status in [UNBLOCKED, SEMI, SUBSET]:
print('The biomass reaction is not blocked; nothing to do here.')
elif status in [TOPO, STOICH]:
print('Returning a list of metabolites that can be unconstrained')
return self.convertToFullNumbering(minimalUnblock(N, Irr, growth))
else: # status = IRREV
print('Returning a list of reactions that can be allowed to be reversible')
return minimalThermoUnblock(N, Irr, growth)
def changeObjectiveFunction(self, coefficients):
assert len(coefficients) == len(self.reactions)
assert min(coefficients) >= 0
self.biomassCoefficients = coefficients
def deleteReactions(self, reactionIndices):
self.reactions = [r for i, r in enumerate(self.reactions) if i not in reactionIndices]
self.createMatrices()
self.updateReduction()
def addReaction(self, reactionName, reactionPairs, reversible = False, description = {}, biomass = False):
nextIndex = len(self.reactions)
if any([x[0] < 0 for x in reactionPairs]):
print("Error: cannot add reaction because some metabolites have negative indices")
return
if any([x[0] >= len(self.metabolites) for x in reactionPairs]):
print("Error: cannot add reaction because a metabolite exceeds the maximum index, " + str(len(self.metabolites)))
return
if not all(x[1] for x in reactionPairs):
print("Error: cannot add reaction because some metabolites have zero coefficients")
return
self.reactions.append(Reaction(reactionName, reactionPairs, nextIndex, reversible, description = description))
if biomass:
self.biomassCoefficients = [zero for x in range(len(self.reactions))]
self.biomassCoefficients[-1] = one
print('Added the specified reaction with number ' + str(nextIndex))
self.createMatrices()
self.updateReduction()
def deleteMetabolites(self, metaboliteIndices):
assert min(metaboliteIndices) >= 0
assert max(metaboliteIndices) < len(self.metabolites)
self.metabolites = [m for i, m in enumerate(self.metabolites) if i not in metaboliteIndices]
self.createMatrices()
self.updateReduction()
def addMetabolite(self, metaboliteName, compartment = None, external = False, description = {}):
nextIndex = len(self.metabolites)
curSpecies = [x.species.name for x in self.metabolites]
if metaboliteName in curSpecies:
metaboliteSpecies = self.metabolites[curSpecies.index(metaboliteName)].species
print('Warning: a metabolite with the same species name already exists in the model.')
else:
metaboliteSpecies = Species(name = metaboliteName, index = len(curSpecies), description = {})
self.metabolites.append(Metabolite(metaboliteSpecies, compartment, nextIndex, external, description = description))
print('Added the specified metabolite with number ' + str(nextIndex))
self.createMatrices()
self.updateReduction()
def findEssentialReactions(self):
if self.checkReduced():
Network = self.reducedMatrix
growth = self.findBiomassReactionReduced()
if growth is not None:
Exchange = list(range(len(self.reactionSubsets)))
allowed = Exchange
Irr = [i for i, subset in enumerate(self.reactionSubsets) if not subset.reversible]
Essential = findEssential(Network, growth, Exchange, allowed, rec = False, I = Irr)
EssentialSubsets = [self.reactionSubsets[y] for y in Essential]
EssentialFull = sum([[x[0] for x in y.pairs] for y in EssentialSubsets], [])
numBasicEssential = len(self.reactionSubsets[growth].pairs)
print(('There are ' + str(numBasicEssential - 1) + ' essential reactions in a subset with the growth reaction.'))
print('Returning the remaining essential reactions')
return sorted(EssentialFull)
def findSyntheticLethalPairs(self,parallel=0):
if self.checkReduced():
Network = self.reducedMatrix
Target = self.findBiomassReactionReduced()
if Target is not None:
Irr = [i for i, subset in enumerate(self.reactionSubsets) if not subset.reversible]
Essential, Lethal = findEssentialLethal(Network, Target, rec = False, I = Irr, verbose = True,parallel=parallel)
allPairs = []
for item in Lethal:
first, second = item[0], item[1]
firstSubset = [x[0] for x in self.reactionSubsets[first].pairs]
secondSubset = [x[0] for x in self.reactionSubsets[second].pairs]
allPairs += [sorted([x,y]) for x in firstSubset for y in secondSubset]
return sorted(allPairs)
def findMinimalMedia(self):
N = self.Matrix
biomassIndex = self.findBiomassReaction()
Irr = self.findIrreversibleReactions()
Ext = set(range(len(self.metabolites)))
Ext.difference_update(self.findInternalMetabolites())
Ext = list(Ext)
Exch = classifyExchange(self.fullMatrix, Ext, Irr, extra = True)
Exch = sum([Exch[x] for x in range(6) if x != 2], []) # omit irreversible export reactions
return findMinimalMedia(N, biomassIndex, Exch, rec = False, I = Irr)
def printReactionFormula(self, reactionNumber):
assert reactionNumber > 0
assert reactionNumber < len(self.reactions)
curReact = self.reactions[reactionNumber]
curPairs = curReact.pairs
curMetabs = self.metabolites
curSpecies = [x.species.name for x in curMetabs]
curComparts = [x.compartment for x in curMetabs]
curRev = curReact.reversible
reagents = [x for x in curPairs if x[1] < 0]
products = [x for x in curPairs if x[1] > 0]
LHS = ' + '.join([str(-x[1]) + ' ' + curSpecies[x[0]] + '[' + curComparts[x[0]] + ']' for x in reagents])
RHS = ' + '.join([str( x[1]) + ' ' + curSpecies[x[0]] + '[' + curComparts[x[0]] + ']' for x in products])
if curRev:
sep = ' <-> '
else:
sep = ' -> '
return (LHS + sep + RHS)
def adjustReversibility(self):
if all([reaction.reversible for reaction in self.reactions]):
print('All the reactions are currently reversible; adjusting using upper and lower bounds.')
descriptors = list(self.reactions[0].description.keys())
UB = findExactlyOne(descriptors, 'upper')
LB = findExactlyOne(descriptors, 'lower')
if UB is not None and LB is not None:
UB, LB = descriptors[UB], descriptors[LB]
for ind, reaction in enumerate(self.reactions):
curDescription = reaction.description
reaction.reversible = bool(float(curDescription[UB]) > 0 and float(curDescription[LB]) < 0)
else:
print('Error: cannot find either upper bounds or lower bounds in the reaction descriptions.')
def adjustReactionNames(self, oldName = 'EC numbers'):
print('Adjusting reaction names')
descriptors = list(self.reactions[0].description.keys())
chosen = findExactlyOne(descriptors, 'name')
if chosen is not None:
goodDescriptor = descriptors[chosen]
for ind, reaction in enumerate(self.reactions):
if reaction.description is not None:
if reaction.name is not None:
reaction.description[oldName] = reaction.name
if goodDescriptor in reaction.description:
reaction.name = reaction.description[goodDescriptor]
del reaction.description[goodDescriptor]
def adjustExternal(self, compart):
print('Adjusting external metabolites')
for metabolite in self.metabolites:
if metabolite.compartment == compart:
metabolite.external = True
self.createMatrices()
def adjustCompartments(self, compart = 'E', startPos = 1):
if len(self.metabolites) == len(self.species):
print('Adjusting compartments')
speciesNames = [x.name for x in self.species]
Map = {}
for name in speciesNames:
curPos = len(name) + startPos if startPos < 0 else startPos
if name[curPos:(curPos + len(compart))] == compart:
reducedName = name[:curPos] + name[(curPos + len(compart)):]
if reducedName not in speciesNames:
print(('Appending a new species: ' + reducedName))
self.species.append(Species(name = reducedName, index = len(speciesNames), description = {}))
speciesNames.append(reducedName)
Map[speciesNames.index(name)] = speciesNames.index(reducedName)
for (key, value) in Map.items():
self.metabolites[key].species = self.species[value]
self.metabolites[key].compartment = compart
self.metabolites[key].external = True
self.species = [x for i,x in enumerate(self.species) if i not in Map]
self.createMatrices()
class NetworkDescription():
def __init__(self, genus, species, iden = None, authors = None, pmid = None, date = None):
self.genus = genus
self.species = species
self.iden = iden
self.authors = authors
self.pmid = pmid
self.date = date
def search(self, s):
#return a score corresponding to how close the match is
matchVal = 0
for t in s.split():
t = t.lower()
if t is self.genus.lower():
matchVal += 15
if t is self.species.lower():
matchVal += 15
if t == str(self.iden).lower():
matchVal += 100
if t is self.authors[0].lower():
matchVal += 20
if t is self.authors[-1].lower():
matchVal += 10
if t in [a.lower() for a in self.authors[1:-1]]:
matchVal += 5
if t[-2:] == self.date[-2:]:
matchVal += 5
if t == self.pmid:
matchVal += 100
return matchVal
def write(self):
print(self.genus,self.species)
print(self.iden)
print(self.authors)
print(self.pmid)
print(self.date)
class ExchangeStatus:
IMPORT = 0
EXPORT = 1
BOTH = 2
NONE = 3
class Reaction:
def __init__(self, name, pairs, index = None, reversible = True, geneCombination = None, reductionStatus = None, exchangeStatus = None, description = None):
self.name = name
# pairs = [(metabolite_index,coefficient)]
# omitted metabolites have coefficient 0
self.pairs = pairs
self.index = index
self.reversible = reversible
self.geneCombination = geneCombination
self.reductionStatus = reductionStatus
self.exchangeStatus = exchangeStatus
self.description = description
def show(self):
print(self.name, self.pairs, self.index, self.reversible, self.geneCombination, self.reductionStatus, self.exchangeStatus, self.description)
class Metabolite:
def __init__(self, species, compartment = None, index = None, external = False, reductionStatus = None, description = None):
self.species = species
self.compartment = compartment
self.index = index
self.external = external
self.reductionStatus = reductionStatus
self.description = description
class Species:
def __init__(self, name = None, index = None, description = None):
self.name = name
self.index = index
self.description = description
class Reaction_Subset:
def __init__(self, pairs, index = None, reversible = True, geneCombination = None):
self.pairs = pairs
self.index = index
self.reversible = reversible
self.geneCombination = geneCombination
class CNF:
def __init__(self, clauses):
self.clauses = clauses
def logicalAnd(self, other):
new = CNF(clauses = self.clauses)
new.clauses = new.clauses + other.clauses
new.logicalSimplify()
return new
def logicalOr(self,other):
new = CNF(clauses = self.clauses)
full = DtoC(new.clauses) + DtoC(other.clauses)
new.clauses = DtoC(full)
new.logicalSimplify()
return new
def logicalSimplify(self):
curClauses = self.clauses
curClauses = [list(set(x)) for x in curClauses]
curClauses = extractUnique(curClauses)
self.clauses = curClauses