-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathMinimalFreeLunch.py
executable file
·276 lines (254 loc) · 12.5 KB
/
MinimalFreeLunch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import qsoptex
import numpy as np
from Utilities import *
from fractions import Fraction
import copy
import shelve
from ModelParsing import *
def l1_equiv_lp(N, constraint_rhs, objective_weight_vector=None, variable_lower_bound=None, variable_upper_bound=None):
m, n = getSize(N)
# following part set a default weight vector
if objective_weight_vector is None:
objective_weight_vector = np.ones(n)
if variable_lower_bound is None:
variable_lower_bound = [None]*n
if variable_upper_bound is None:
variable_upper_bound = [None]*n
p = qsoptex.ExactProblem()
# In the following part we define the objective of the linear programming
for i in range(n):
p.add_variable(name='z' + str(i), objective=objective_weight_vector[i], lower=None, upper=None)
p.add_variable(name='x' + str(i), objective=0, lower=variable_lower_bound[i], upper=variable_upper_bound[i])
# In the following part we define constrains of the linear Programming
for j in range(m):
p.add_linear_constraint(qsoptex.ConstraintSense.GREATER,
{'x' + str(i): N[j][i] for i in range(n)}, rhs=constraint_rhs[j])
for i in range(n):
p.add_linear_constraint(qsoptex.ConstraintSense.GREATER,
{'z' + str(i): 1, 'x' + str(i): 1}, rhs=0)
p.add_linear_constraint(qsoptex.ConstraintSense.GREATER,
{'z' + str(i): 1, 'x' + str(i): -1}, rhs=0)
# Following part would solve the LP with qsoptex
p.set_objective_sense(qsoptex.ObjectiveSense.MINIMIZE)
p.set_param(qsoptex.Parameter.SIMPLEX_DISPLAY, 1)
status = p.solve()
return p, status, n
def minimum_free_lunches(N, constraint_rhs, objective_weight_vector=None, variable_lower_bound=None, variable_upper_bound=None):
m, n = getSize(N)
# alpha = Fraction(1, 10)
# Set default weight vector
if objective_weight_vector is None:
objective_weight_vector = np.ones(n)
if variable_lower_bound is None:
variable_lower_bound = [None]*n
if variable_upper_bound is None:
variable_upper_bound = [None]*n
p = qsoptex.ExactProblem()
for i in range(n):
p.add_variable(name='z' + str(i), objective=objective_weight_vector[i], lower=None, upper=None)
p.add_variable(name='x' + str(i), objective=0, lower=variable_lower_bound[i], upper=variable_upper_bound[i])
# The following part will add non-negative slack variable y
for i in range(m):
p.add_variable(name='y' + str(i), objective=0, lower=0, upper=None)
for j in range(m):
constraints_dict = {'x' + str(i): N[j][i] for i in range(n)}
constraints_dict.update({'y' + str(j): -1})
p.add_linear_constraint(qsoptex.ConstraintSense.EQUAL, constraints_dict, rhs=constraint_rhs[j])
constraints_dict.clear()
for i in range(n):
p.add_linear_constraint(qsoptex.ConstraintSense.GREATER,
{'z' + str(i): 1, 'x' + str(i): 1}, rhs=0)
p.add_linear_constraint(qsoptex.ConstraintSense.GREATER,
{'z' + str(i): 1, 'x' + str(i): -1}, rhs=0)
# Adding tolerance to whole system
p.add_linear_constraint(qsoptex.ConstraintSense.GREATER, {'y' + str(i): 1 for i in range(m)},
rhs=1)
# ------------
p.set_objective_sense(qsoptex.ObjectiveSense.MINIMIZE)
p.set_param(qsoptex.Parameter.SIMPLEX_DISPLAY, 1)
status = p.solve()
return p, status, n
def l1_equiv_lp_ans(p, status, reactions_num):
solution_non_zero_elements = []
solution_non_zero_indexes = []
ans_vector_x = []
ans_vector_z = []
if status == qsoptex.SolutionStatus.OPTIMAL:
print('Optimal solution')
print(p.get_objective_value())
for i in range(reactions_num):
ans_vector_x.append(p.get_value('x' + str(i)))
ans_vector_z.append(p.get_value('z' + str(i)))
if p.get_value('x' + str(i)) != 0:
# print('x' + str(i), p.get_value('x' + str(i)))
# print('z' + str(i), p.get_value('z' + str(i)))
solution_non_zero_elements.append(p.get_value('x' + str(i)))
solution_non_zero_indexes.append(i)
print('l0 approximation')
print(len(solution_non_zero_elements))
# print('Non-zero elements of the solution')
# print(solution_non_zero_elements)
# print('Indexes of non-zero elements of the solution ')
# print(solution_non_zero_indexes)
return solution_non_zero_elements, solution_non_zero_indexes, ans_vector_x, ans_vector_z
# The following function is based on the "iterative algorithm for reweighted l1 minimization" presented in
# "Enhancing Sparsity by Reweighted l1 Minimization" by EJ. Candes, MB Wakin and SP Boyd.
def re_weighted_linear_program(N, e, variable_lower_bound, variable_upper_bound):
flag = True
optimal_solution_length = 0
m, n = getSize(N)
iteration = 0
w = np.ones(n)
epsilon = Fraction(1, 10)
stop_num = 6
while iteration < stop_num and flag:
p, status, reactions_num = l1_equiv_lp(N, e, w, variable_lower_bound, variable_upper_bound)
print('%d iteration' % iteration)
solution_non_zero_elements, solution_non_zero_indexes, ans_vector_x, ans_vector_z \
= l1_equiv_lp_ans(p, status, n)
if status == qsoptex.SolutionStatus.OPTIMAL:
for i in range(n):
w[i] = Fraction(1, p.get_value('z' + str(i)) + epsilon)
check_array, check_array_non_zero, flag = ans_check(N, ans_vector_x, e, m)
# print('check_array_non_zero:', check_array_non_zero)
print('solution non-zero element', solution_non_zero_elements)
print('solutions non-zero indexes', solution_non_zero_indexes)
else:
print('LP does not have a solution for these constraints')
iteration = stop_num
iteration += 1
if len(solution_non_zero_elements) == optimal_solution_length:
flag = False
else:
optimal_solution_length = len(solution_non_zero_elements)
return p, status, reactions_num, solution_non_zero_elements, solution_non_zero_indexes, ans_vector_x, ans_vector_z
def standard_basis(basis_dimention, basis_index):
# This method is faster than numpy.eye
e = np.zeros(basis_dimention)
e[basis_index] = 1
return e
def ans_check(N, ans_vector_x, e, n):
check_array = np.dot(N, ans_vector_x)
check_array_non_zero = {}
flag = True
for i in range(n):
if check_array[i]!=0:
check_array_non_zero.update({'index:'+str(i): check_array[i]})
if check_array[i] - e[i] < 0:
flag = False
print(i)
print('This solution is:')
print(flag)
return check_array, check_array_non_zero, flag
def free_lunch_check(N, reaction_vector, constraint_rhs):
non_zero_indexes = []
for j in range(len(reaction_vector)):
if reaction_vector[j] != 0:
non_zero_indexes.append(j)
lower_upper_bound = [0]*(len(reaction_vector))
# print("TRACE 1st lower_upper_bound:", lower_upper_bound)
free_lunch_status = False
for i in non_zero_indexes:
lower_upper_bound[i] = None
# print("TRACE 2st lower_upper_bound:", lower_upper_bound)
p, status, n = l1_equiv_lp(N, constraint_rhs, None, lower_upper_bound, lower_upper_bound)
if status == qsoptex.SolutionStatus.OPTIMAL:
free_lunch_status = True
print("TRACE free lunch status:", free_lunch_status)
return free_lunch_status, p, status, n
def extract_minimal_set(N, reaction_vector, constraint_rhs):
non_zero_indexes = []
minimal_set_indexes = []
for j in range(len(reaction_vector)):
if reaction_vector[j] != 0:
non_zero_indexes.append(j)
# non_zero_indexes = list(np.nonzero(reaction_vector)[0])
for i in non_zero_indexes:
temp_vector = copy.deepcopy(reaction_vector)
# print("TRACE 1st Temp-vector:", temp_vector)
# print("TRACE reaction vector:", reaction_vector)
temp_vector[i] = 0
# print("TRACE 2st Temp-vector:", temp_vector)
free_lunch_status, p, status, n = free_lunch_check(N,temp_vector,constraint_rhs)
if free_lunch_status:
print('This index is not in the minimal', i)
reaction_vector = copy.deepcopy(temp_vector)
else:
print('This index is in the miniaml set', i)
minimal_set_indexes.append(i)
return minimal_set_indexes, reaction_vector
def remove_unusful_reaction(N):
m,n = getSize(N)
removed_column_index = []
p =[]
ne=[]
for i in range(n):
# change the name to non_zero_elements
non_zero_index = []
column_ith = [row[i] for row in N]
for j in column_ith:
if j != 0:
non_zero_index.append(j)
num_positive_sign = list(np.sign(non_zero_index)).count(1)
p.append(num_positive_sign)
num_negative_sign = list(np.sign(non_zero_index)).count(-1)
ne.append(num_negative_sign)
if num_positive_sign == 0 or num_negative_sign == 0:
removed_column_index.append(i)
#for i in range(n-1,-1,-1):
#if i in removed_column_index:
#for row in N:
#row.pop(i)
return N, removed_column_index,p,ne
def scripts_mfl(model, all_flm_index_list):
# This function will return minimal free lunches for a given model with a specific list of free lunch metabolites
# Please setup path for your output
from collections import defaultdict
N, removed_column_index, p, ne = remove_unusful_reaction(model.fullMatrix)
# find biomass reaction
biomass_reaction = model.findBiomassReaction()
# make a copy of sloppy reactions - blocked reactions are the reactions that would cause false free lunches
# because of their representation in stoichiometric matrix
blocked_reactions = copy.copy(removed_column_index)
# add biomass reaction to blocked reactions - we are not interested in biomass reaction for now
blocked_reactions.append(biomass_reaction)
# find additional biomass reactions
biomass_reaction_candidates = []
for r in model.reactions:
reaction_name_biomass = r.name.lower()
if reaction_name_biomass.find('biomass') != -1:
biomass_reaction_candidates.append({'name': r.name, 'index': r.index})
blocked_reactions.append(r.index)
m, n = getSize(N)
output_dict = defaultdict(list)
indexes_output_dict = defaultdict(list)
# Reactions which we want to block
deleted_reactions_bd = [None] * n
for i in blocked_reactions:
deleted_reactions_bd[i] = 0
for i in all_flm_index_list:
e = standard_basis(m,int(i))
# print('-------------------------------------->>>> '+str(i)+' <<<<------------------------------------------------------')
# print('-----------------------------------------------FL---------------------------------------------------')
p, status, reactions_num, solution_non_zero_elements, solution_non_zero_indexes_w, ans_vector_x_w, ans_vector_z=\
re_weighted_linear_program(N, e, deleted_reactions_bd, deleted_reactions_bd)
output_dict['FL'+str(i)] = copy.deepcopy(ans_vector_x_w)
indexes_output_dict['FL' + str(i)] = copy.deepcopy(solution_non_zero_indexes_w)
# print('---------------------------------------------------OUTPUT----------------------------------------------')
# print('solution_non_zero_indexes', solution_non_zero_indexes_w)
# print('solution_non_zero_elements',solution_non_zero_elements)
# print('-----------------------------------------------Minimal-FL---------------------------------------------------')
minimal_set_indexes_w, reaction_vector_w = extract_minimal_set(N,ans_vector_x_w,e)
output_dict['minimalFL' + str(i)] = copy.deepcopy(reaction_vector_w)
indexes_output_dict['minimalFL' + str(i)] = copy.deepcopy(minimal_set_indexes_w)
# print('---------------------------------------------------OUTPUT----------------------------------------------')
# print(output_dict)
# save dicts
output_shelved_dict = shelve.open("/path/for/output/FL.db")
output_shelved_dict.update(output_dict)
output_shelved_dict.close()
####
indexes_output_shelved_dict = shelve.open("/path/for/output/MFL.db")
indexes_output_shelved_dict.update(indexes_output_dict)
indexes_output_shelved_dict.close()
return output_dict, indexes_output_dict, removed_column_index