Skip to content

Torch implementation of various types of GAN (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN)

License

Notifications You must be signed in to change notification settings

WangNuoWa/gans-collection.torch

 
 

Repository files navigation

gans-collection.torch

Torch implementation of various types of GANs (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN).

image

Contents

Prerequisites

  • Torch7
  • python2.7
  • cuda
  • other torch packages (display, hdf5, image ...)

Usage

  1. download training data:
python download.py --datasets <dataset>
(e.g) python run.py --datasets celebA

---------------------------------------
The training data folder should look like : 
<train_data_root>
                |--classA
                        |--image1A
                        |--image2B ...
                |--classB
                        |--image1B
                        |--image2B ...
---------------------------------------
  1. run GANs training: Note that you need to change parameter options in "script/opts.lua" for each GANs.
python run.py --type <gan_type>
(e.g) python run.py --type dcgan

Display GUI : How to see generated images in real-time?

step by step instruction:

1. set server-related options(ip, port, etc.) in "script.opts.lua"
2. run server (python server.py --type <gan_type>)
3. open web browser, and connect. (https://<server_ip>:<server_port>)

you will see like this: image

Results

In progress Final

Acknowledgement

Author

MinchulShin, @nashory
Will keep updating other types of GANs.
Any insane bug reports or questions are welcome. (min.stellastra[at]gmail.com) :-)

About

Torch implementation of various types of GAN (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Lua 96.4%
  • Python 3.2%
  • Shell 0.4%