Skip to content

This is just a place to save the deep learning references that I believe are valueable and helpful

Notifications You must be signed in to change notification settings

armhzjz/DeepLearning-References

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 

Repository files navigation

DeepLearning References

This is a place to save the deep learning references that I believe are valueable and helpful.

First things first ...

How to read and understand a scientific paper: a guide for non-scientists

Neural Networks - the basics


Papers

Paper Authors Application comment
Efficient BackProp Yann LeCun πŸ‘ˆ
Practical recommendations for gradient-based training of deep architectures Yoshua Bengio - πŸ‘ˆ
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift YSergey Ioffe, Christian Szegedy - πŸ‘ˆ
Understanding the difficulty of training deep feedforward neural networks Xavier Glorot, Yoshua Bengio - πŸ‘ˆ
Visualizing Data using t-SNE Laurens van der Maaten, Geoffrey Hinton - πŸ‘ˆ
Accelerating t-SNE using Tree-Based Algorithms Laurens van der Maaten - πŸ‘ˆ

Articles and other resources



CNNs - Image & Object detection


Papers

Paper Authors Application comment
Image Style Transfer Using Convolutional Neural Networks Leon A. Gatys, Alexander S. Ecker, Matthias Bethge Style Transfer
Depth Map Prediction from a Single Imageusing a Multi-Scale Deep Network David Eigen, Christian Puhrsch, Rob Fergus -
Dynamic Routing Between Capsules Sara Sabour, Nicholas Frosst, Geoffrey E. Hinton -
Densely Connected Convolutional Networks Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger - My own implementation of Densenet as a python module can be found here.
Gradient Based Learning Applied to Document Recognition Yann LeCun, LΓ©on Bottou, Yoshua Bengio, Patrick Haffner -
How transferable are features in deep neural networks? Jason Yosinski, Jeff Clune, Yoshua Bengio, Hod Lipson - πŸ‘ˆ
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun - πŸ‘ˆ
Image Segmentation Using Deep Learning: A Survey Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtarnavaz, Demetri Terzopoulos -
Deep Residual Learning for Image Recognition Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun - πŸ‘ˆ
The Importance of Skip Connections in Biomedical Image Segmentation Michal Drozdzal, Eugene Vorontsov, Gabriel Chartrand, Samuel Kadoury, Chris Pal - πŸ‘ˆ
Fully Convolutional Networks for Semantic Segmentation Evan Shelhamer, Jonathan Long, Trevor Darrell - πŸ‘ˆ
U-Net: Convolutional Networks for Biomedical Image Segmentation Olaf Ronneberger, Philipp Fischer, and Thomas Brox Segmantic Segmentation πŸ‘ˆπŸ‘ˆ
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L. Yuille Segmantic Segmentation πŸ‘ˆ Impl.
Gated-SCNN: Gated Shape CNNs for Semantic Segmentation Towaki Takikawa, David Acuna, Varun Jampani, Sanja Fidler Segmantic Segmentation πŸ‘ˆ Impl.
FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation Huikai Wu, Junge Zhang, Kaiqi Huang, Kongming Liang, Yizhou Yu Segmantic Segmentation πŸ‘ˆ Impl.
On Power Jaccard Losses for Semantic Segmentation David Duque-Arias, Santiago Velasco-Forero, Jean-Emmanuel Deschaud, Francois Goulette, Andres Serna, Etienne Decenciere and Beatriz Marcotegui Segmantic Segmantation πŸ‘ˆ Loss functions for segmentation tasks
Locating Objects Without Bounding Boxes Javier Ribera, David GΓΌera, Yuhao Chen, Edward J. Delp Object Location (Loss function πŸ‘ˆ implementation

Articles and other resources



Recurrent Neural Networks


Papers

Paper Authors Application comment
Visualizing and Understanding Recurrent Networks Andrej Karpathy, Justin Johnson, Li Fei-Fei - πŸ‘ˆ
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, Yoshua Bengio -
An Empirical Exploration of Recurrent Network Architectures Rafal Jozefowicz, Wojciech Zaremba, Ilya Sutskever -
LSTM: A Search Space Odyssey Klaus Greff, Rupesh K. Srivastava, Jan Koutn ́ık, Bas R. Steunebrink, J ̈urgen Schmidhuber -
An Empirical Exploration of Recurrent Network Architectures Rafal Jozefowicz, Wojciech Zaremba, Ilya Sutskever -
Massive Exploration of Neural Machine Translation Architectures Denny Britz, Anna Goldie, Minh-Thang Luong, Quoc Le -
WAVENET: A GENERATIVEMODEL FORRAWAUDIO AΓ€ron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, Koray Kavukcuoglu Deep generative model of raw audio waveforms
How to Generate a Good Word Embedding? Siwei Lai, Kang Liu, Liheng Xu, Jun Zhao -
Systematic evaluation of CNN advances on the ImageNet by Dmytro Mishkin, Nikolay Sergievskiy, Jiri Matas - πŸ‘ˆ
Efficient Estimation of Word Representations inVector Space Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean - πŸ‘ˆ
Distributed Representations of Words and Phrasesand their Compositionality Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean - πŸ‘ˆ
Neural Machine Translation by Jointly Learning to Align and Translate Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio -
Learning Phrase Representations using RNN Encoder–Decoderfor Statistical Machine Translation Kyunghyun Cho, Bart van Merri ̈enboe, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, Yoshua Bengio -
Effective Approaches to Attention-based Neural Machine Translation Minh-Thang Luong, Hieu Pham, Christopher D. Manning -
Training Tips for the Transformer Model Martin Popel, OndΕ™ej Bojar -

Example RNN Architectures

Application Cell Layers Size Vocabulary Learning Rate Paper
Speech Recognition (large vocabulary) LSTM 5, 7 600, 1000 82K, 500K -- -- Neural Speech Recognizer: Acoustic-to-Word LSTM Model for Large Vocabulary Speech Recognition
Speech Recognition LSTM 1, 3, 5 250 -- -- 0.001 Speech Recognition with Deep Recurrent Neural Networks
Machine Translation (seq2seq) LSTM 4 1000 Source: 160K, Target: 80K 1,000 -- Sequence to Sequence Learning with Neural Networks
Image Captioning LSTM -- 512 -- 512 (fixed) Show and Tell: A Neural Image Caption Generator
Image Generation LSTM -- 256, 400, 800 -- -- -- DRAW: A Recurrent Neural Network For Image Generation
Question Answering LSTM 2 500 -- 300 -- A Long Short-Term Memory Model for Answer Sentence Selection in Question Answering
Text Summarization GRU 200 Source: 119K, Target: 68K 100 0.001 Sequence-to-Sequence RNNs for Text Summarization

Articles and other resources



Generative Adversarial Networks


Papers

Paper Authors Application comment
Generative Adversarial Nets Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio - πŸ‘ˆ
UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS Alec Radford, Luke Metz - πŸ‘ˆ
Improved Techniques for Training GANs Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen - πŸ‘ˆ
Fine-Grained Car Detection for Visual Census Estimation Tim Gebru, Jonathan Krause, Yilun Wang, Duyun Chen, Jia Deng, Li Fei Fei -
CycleGAN Face-off Xiaohan Jin, Ye Qi Shangxuan Wu - πŸ‘ˆ
Image-to-Image Translation with Conditional Adversarial Networks Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros - πŸ‘ˆ
High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, Bryan Catanzaro -
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros -
Augmented CycleGAN: Learning Many-to-Many Mappings from Unpaired Data Amjad Almahairi, Sai Rajeswar, Alessandro Sordoni, Philip Bachman, Aaron Courville - πŸ‘ˆ
StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, Jaegul Choo - πŸ‘ˆ
Least Squares Generative Adversarial Networks Xudong Mao, Qing Li, Haoran Xie, Raymond Y.K. Lau, Zhen Wang, Stephen Paul Smolley - πŸ‘ˆ
Sampling Generative Networks Tom White - πŸ‘ˆ πŸ‘ˆ
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network Wenzhe Shi, Jose Caballero, Ferenc HuszΓ‘r, Johannes Totz, Andrew P. Aitken, Rob Bishop, Daniel Rueckert, Zehan Wang - πŸ‘ˆ
Instance Normalization: The Missing Ingredient for Fast Stylization Dimitry Ulyanov, Andrea Vedaldi, Victor Lempitsky Replacement of BatchNorms
Taming Transformers for High-Resolution Image Synthesis Patrick Esser, Robin Rombach, BjΓΆrn Ommer -

Articles and other resource



Deep Reinforcement Learning


Papers

Paper Authors Application comment
Feedback Control For Cassie With Deep Reinforcement Learning Zhaoming Xie, Glen Berseth, Patrick Clary, Jonathan Hurst, Michiel van de Panne - πŸ‘ˆ
Convergence of Optimistic and Incremental Q-Learning Eyal Even-Dar, Yishay Mansour Q-Table initialization πŸ‘ˆ
Issues in Using Function Approximation for Reinforcement Learning Sebastian Thrun, Anton Schwartz - πŸ‘ˆ
Deep Reinforcement Learning with Double Q-learning Hado van Hasselt, Arthur Guez, David Silver - πŸ‘ˆ
Prioritized Experience Replay Tom Schaul, John Quan, Ioannis Antonoglou, David Silver - πŸ‘ˆ
Dueling Network Architectures for Deep Reinforcement Learning Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, Nando de Freitas - πŸ‘ˆ

Articles and other resource



Optimizers


Papers

Paper Authors Application comment
SGDR: STOCHASTIC GRADIENT DESCENT WITH WARM RESTARTS Ilya Loshchilov & Frank Hutter - πŸ‘ˆ

Articles and other resource



Miscellaneous


About

This is just a place to save the deep learning references that I believe are valueable and helpful

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published