Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add liekf example for se2_localization #308

Closed
wants to merge 6 commits into from

Conversation

Chris7462
Copy link

This PR provides an example of the left IEKF method based on position measurements (GPS-like). The example was adapted from here with some corrections in the update step.

Comment on lines 239 to 238
H.topLeftCorner<2, 2>() = Matrix2d::Identity();
H.topRightCorner<2, 1>() = manif::skew(1.0) * X.translation();
Copy link
Author

@Chris7462 Chris7462 Sep 1, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Since the expectation $h(X)=t$, $t$ is the translation, this is equivalent to $X$ act on 0. The Jacobian of $H$ is derived as follows:

$$\begin{align} H & = \frac{\partial h}{\partial X}\\\ & = \lim_{\tau\rightarrow 0} \frac{h(\tau\oplus X)\ominus h(X)}{\tau}\\\ & = \lim_{\tau\rightarrow 0} \frac{(Exp(\tau)X)\cdot 0-X\cdot 0}{\tau}\\\ & = \lim_{\tau\rightarrow 0}\frac{\left(\begin{bmatrix} I+\phi^{\wedge} & \rho\\\ 0 & 1 \end{bmatrix}\begin{bmatrix} R & t\\\ 0 & 1 \end{bmatrix}\right) \cdot 0-\begin{bmatrix} R & t\\\ 0 & 1 \end{bmatrix}\cdot 0}{\tau}\\\ & = \lim_{\tau\rightarrow 0}\frac{\begin{bmatrix} (I+\phi^{\wedge})R & (I+\phi^{\wedge})t+\rho\\\ 0 & 1 \end{bmatrix}\cdot 0-\begin{bmatrix} R & t\\\ 0 & 1 \end{bmatrix}\cdot 0}{\tau}\\\ & = \lim_{\tau\rightarrow 0}\frac{(I+\phi^{\wedge})t+\rho-t}{\tau}\\\ & = \lim_{\tau\rightarrow 0}\frac{\phi^{\wedge}t+\rho}{\tau}\\\ & = \frac{\partial(\phi^{\wedge}t+\rho)}{\partial \tau}\Bigg|_{\tau=0}\\\ & = \left[\left.\frac{\partial(\phi^{\wedge}t+\rho)}{\partial\rho}\right|_{\rho=0},\left.\frac{\partial(\phi^{\wedge}t+\rho)}{\partial\phi}\right|_{\phi=0}\right]\\\ & = [I, 1^{\wedge}t] \end{align}$$

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This comment I guess will not appear in the final commits.

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes, this comment will not appear in the commits.

Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This matrix isn't right. See e.g. chapter "4 Simplified car example" in "The Invariant Extended Kalman filter as a stable observer", A. Barrau, S. Bonnabel.

Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This measurement model is of the form y = x.b + v and is thus left invariant. If I'm not mistaken, H should then be derived with the right-plus (which correspond to left invariance):

$$\begin{align} H & = \frac{\partial h}{\partial X}\\\ & = \lim_{\tau\rightarrow 0} \frac{h(X\oplus\tau)\ominus h(X)}{\tau}\\\ & = ... \end{align}$$

If you work the math you should find something along the lines of:

$$H = \begin{bmatrix} -{\bf I} & {\bf 0} \end{bmatrix}$$

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Ok this makes more sense

Copy link
Collaborator

@joansola joansola Sep 10, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Then you need the Jacobian of X.inv(y-h(X)), and not of h(X). OK, to find such Jacobian, just use the rules for right-jacobians in the paper, you certainly will find [-I, 0] I guess. Just need to know if you need to differentiate wrt. X, or wrt. \hat X -- I am unsure at the moment.

Copy link
Author

@Chris7462 Chris7462 Sep 11, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I get the desired result from the Jacobian of $X^{-1}\cdot h(X)$ w.r.t $X$, where $h(X)=X\cdot 0 =t$

$$\begin{align} J^{X^{-1}\cdot h(X)}_{X} & = J^{X^{-1}\cdot t}_{X^{-1}}J^{X^{-1}}_{X}\\\ & = \begin{bmatrix} R^{T} & R^{T}[1]_{x}t \end{bmatrix}\begin{bmatrix} -R & [1]_{x}t\\\ 0 & -1 \end{bmatrix}\\\ & = \begin{bmatrix} -\mathbf{I} & \mathbf{0} \end{bmatrix} \end{align}$$

Am I doing this correctly? Does this make sense?

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

looks good

Copy link
Author

@Chris7462 Chris7462 Sep 24, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

After reading the papers by Axel Barrau and Silvere Bonnabel (2017, 2018) and Jonathan Arsenault (2019), I believe I finally understand the concepts. Let me use this example to summarize my findings and compare the results with the manif paper.

Example: SE(2) with GPS-like measurement

Recap the setting:

We consider the robot pose $\chi$ in SE(2) and the GPS measurement $y$ is in $\mathbb{R}^{2}$,

$$\mathbf{\chi} = \begin{bmatrix} \mathbf{R} & \mathbf{t}\\\ \mathbf{0}^{T} & 1 \end{bmatrix}$$

The control signal $\mathbf{u}$ is in se(2) and is corrupted by additive Gaussian noise $\mathbf{\varepsilon}$, which has a mean of 0 and a covariance of $\mathbf{Q}$. Upon receiving a control $\mathbf{u}$, the robot pose is updated as follows:

$$\begin{align} \chi_{t} & = f(\chi_{t-1}, \mathbf{u}_{t},\mathbf{\varepsilon}_{t})\\\ & = \chi_{t-1}*\text{Exp}(\mathbf{u}_{t}+\mathbf{\varepsilon}_{t}). \end{align}$$

The GPS measurement $\mathbf{y}$ is in Cartesian form for simplicity, and the noise is denoted $\mathbf{\delta}$, which has a mean of 0 and a covariance of $\mathbf{R}$.

$$\begin{align} \mathbf{y}_{t} & = h(\chi_{t}, b) + \mathbf{\delta}_{t}\\\ & = \chi_{t} \cdot b+\mathbf{\delta}_{t} \end{align}$$

where $b=0$ for rigid motion action in this case.

Let $\bar{\chi}$ be the estimate of $\chi$. Therefore, we have $\bar{\chi}_{t}=f(\bar{\chi}_{t-1}, \mathbf{u}_{t}, 0)$. Now, we can begin working on the math and comparing the differences

Predict step:

Axel and Silvere's approach:

They define the left-invariant error as $\eta_{t}=\chi^{-1}_{t}\bar{\chi}_{t}$.

$$\begin{align} \eta_{t}^{L} & = \chi^{-1}_{t}\bar{\chi}_{t}\\\ & = \left[\chi_{t-1}*\text{Exp}(\mathbf{u}_{t}+\mathbf{\varepsilon}_{t})\right]^{-1}\left[\bar{\chi}_{t-1}*\text{Exp}(\mathbf{u}_{t})\right]\\\ & = \text{Exp}(-\varepsilon_{t})\text{Exp}(\mathbf{u}_{t})^{-1}\eta_{t-1}^{L}\text{Exp}(\mathbf{u}_{t}) \end{align}$$

One can find a $\xi_{t}^{L}$ such that $\eta_{t}^{L} = \text{Exp}(\xi_{t}^{L})$. This allows us to rewrite the above equation as follows:

$$\begin{align} \Rightarrow \text{Exp}(\xi_{t}^{L}) &= \text{Exp}(-\varepsilon_{t})\text{Exp}(\mathbf{u}_{t})^{-1}\text{Exp}(\xi_{t}^{L})\text{Exp}(\mathbf{u}_{t})\\\ & = \text{Exp}(-\varepsilon_{t})\text{Exp}(\text{Ad}_{\text{Exp}(\mathbf{u}_{t})}^{-1}\xi_{t-1}^{L})\\\ \Rightarrow \xi_{t}^{L} &= \text{Ad}_{\text{Exp}(\mathbf{u}_{t})}^{-1}\xi_{t-1}^{L}-\varepsilon_{t}\\\ \Rightarrow \xi_{t}^{L} &= F_{t}\xi_{t-1}^{L}+W_{t}\varepsilon_{t} \end{align}$$

The Jacobians are given by

$$F_{t} = \text{Ad}_{\text{Exp}(\mathbf{u}_{t})}^{-1} \text{\hspace{3ex}and\hspace{3ex}} W_{t}=-\mathbf{I}.$$

Thus, the predicted state and error covariance are computed as follows:

$$\begin{align} \check{\chi}_{t} & = \bar{\chi}_{t}=\bar{\chi}_{t-1}\oplus \mathbf{u}_{t}\\\ \check{\Sigma}_{t} & = F_{t}\hat{\Sigma}_{t-1}F_{t}^{T}+W_{t}Q_{t}W_{t}^{T} \end{align}$$

manif approach:

Their approach involves defining the error on the tangent space and applying the error-state extended Kalman filter on the Lie Group. To facilitate this, they introduce the concepts of right-plus and right-minus operators as follows:

$$\begin{align} \text{right-}\oplus: & \hspace{1ex}\mathcal{Y}=\mathcal{X}\oplus {}^{\mathcal{x}}\tau =\mathcal{X}*\text{Exp}({}^{\mathcal{x}}\tau)\\\ \text{right-}\ominus: & \hspace{1ex} {}^{\mathcal{x}}\tau=\mathcal{Y}\ominus\mathcal{X}=\text{Log}(\mathcal{X}^{-1}*\mathcal{Y}) \end{align}$$

Next, using Taylor expansion of $\chi_{t-1}$ around $\bar{\chi}_{t-1}$, we have:

$$\begin{align} \chi_{t} &= f(\chi_{t-1},\mathbf{u}_{t}, \varepsilon)\\\ & \approx f(\bar{\chi}_{t-1},\mathbf{u}_{t},0)\oplus \left.\frac{\partial f}{\partial \chi}\right|_{\chi_{t-1}=\bar{\chi}_{t-1}}(\chi_{t-1}\ominus\bar{\chi}_{t-1})\oplus\left.\frac{\partial f}{\partial \varepsilon}\right|_{\varepsilon_{t}=0}(\varepsilon_{t}-0)\\\ & = \bar{\chi_{t}}\oplus F_{t}(\chi_{t-1}\ominus\bar{\chi}_{t-1})\oplus W_{t}\varepsilon_{t} \end{align}$$

Let ${}^{\mathcal{x}}\xi=\chi\ominus\bar{\chi}=\text{Log}(\bar{\chi}^{-1}*\chi).$ From this definition, we have $\text{Exp}({}^{\mathcal{x}}\xi)=\bar{\chi}^{-1}*\chi$. We note that ${}^{\mathcal{x}}\xi = -\xi^{L}$.

We can now rewrite the earlier equation as:

$${}^{\mathcal{x}}\xi_{t}=F_{t} {}^{\mathcal{x}}\xi_{t-1}+W_{t}\varepsilon_{t}$$

where the Jacobians are defined as follows:

For $F_{t}$:

$$\begin{align} F_{t} & = \left.\frac{\partial f}{\partial \chi}\right|_{\chi_{t-1}=\bar{\chi}_{t-1}}\\\ & = \lim_{\chi_{t-1}\rightarrow\bar{\chi}_{t-1}}\frac{f(\chi_{t-1},\mathbf{u}_{t},0)\ominus f(\bar{\chi}_{t-1},\mathbf{u}_{t},0)}{\chi_{t-1}\ominus\bar{\chi}_{t-1}}\\\ & = \lim_{{}^{\mathcal{x}}\xi_{t-1}\rightarrow 0}\frac{f(\chi_{t-1}\oplus{}^{\mathcal{x}}\xi_{t-1},\mathbf{u}_{t},0)\ominus f(\chi_{t-1},\mathbf{u}_{t},0)}{{}^{\mathcal{x}}\xi_{t-1}}\\\ & = \frac{Df(\chi_{t-1},\mathbf{u}_{t},0)}{D\chi_{t-1}}\\\ & = J_{\chi_{t-1}}^{f(\chi_{t-1},\mathbf{u}_{t},0)}\\\ & = J_{\chi_{t-1}}^{\chi_{t-1}\oplus\mathbf{u}_{t}}\\\ & = J_{\chi_{t-1}}^{\chi_{t-1}*\text{Exp}(\mathbf{u}_{t})}\\\ & = \text{Ad}_{\text{Exp}(\mathbf{u}_{t})}^{-1} \end{align}$$

For $W_{t}$:

$$\begin{align} W_{t} & = \left.\frac{\partial f}{\partial \varepsilon}\right|_{\varepsilon_{t}=0}\\\ & = \lim_{\varepsilon_{t}\rightarrow 0}\frac{f(\bar{\chi}_{t-1},\mathbf{u}_{t},\varepsilon_{t})\ominus f(\bar{\chi}_{t-1},\mathbf{u}_{t},0)}{\varepsilon_{t}}\\\ & = J^{f(\bar{\chi}_{t-1},\mathbf{u}_{t},\varepsilon_{t})}_{\varepsilon_{t}}\\\ & = J^{(\bar{\chi}_{t-1}\oplus\mathbf{u}_{t})\oplus\varepsilon_{t}}_{\varepsilon_{t}}\\\ & = J_{r}(\varepsilon_{t})\\\ & \approx \mathbf{I} \end{align}$$

Note that in the manif approach, the $W_{t}$ is the negation of $W_{t}$ in Axel and Silvere's approach. This difference arises from the definition of the error state ${}^{\mathcal{x}}\xi$, where $\text{Exp}({}^{\mathcal{x}}\xi)=\bar{\chi}^{-1}\chi$. If you substitute ${}^{\mathcal{x}}\xi$ with $-\xi^{L}$ in the error propogation equation, you will get the same result of $W_{t}$ as in Axel and Silvere's approach.

Therefore, the predicted state and error covariance are

$$\begin{align} \check{\chi}_{t} & = \bar{\chi}_{t}=\bar{\chi}_{t-1}\oplus \mathbf{u}_{t}\\\ \check{\Sigma}_{t} & =F_{t}\hat{\Sigma}_{t-1}F_{t}^{T}+W_{t}Q_{t}W_{t}^{T} \end{align}$$

which match exactly with the results in Axel and Silvere's approach.

Update step:

Axel and Silvere's approach:

$$\begin{align} y_{t} &= h(\chi_{t},b)+\delta_{t},\hspace{1ex}\text{with } b=0\\\ &=\chi_{t}\cdot b+\delta_{t}\\\ \Rightarrow \begin{bmatrix} y_{t}\\\ 0 \end{bmatrix} & = \chi_{t}\begin{bmatrix} b\\\ 1 \end{bmatrix}+\begin{bmatrix} \delta_{t}\\\ 0 \end{bmatrix} \end{align}$$ $$\begin{align} \bar{y}_{t} &=h(\bar{x}_{t},b)\\\ & = \bar{x}_{t}\cdot b \end{align}$$

Now, define the innovation $z_{t}$ such that

$$\begin{align} \begin{bmatrix} z_{t}\\\ 0 \end{bmatrix} &= \bar{\chi}_{t}^{-1}\left(\begin{bmatrix} y_{t}\\\ 0 \end{bmatrix}-\begin{bmatrix} \bar{y}_{t}\\\ 0 \end{bmatrix}\right)\\\ &= \bar{\chi}_{t}^{-1}\left( \chi_{t} \begin{bmatrix} b\\\ 1 \end{bmatrix}+ \begin{bmatrix} \delta_{t}\\\ 0 \end{bmatrix}-\bar{\chi}_{t}\begin{bmatrix} b\\\ 1 \end{bmatrix} \right)\\\ & = \eta_{t}^{L^{-1}} \begin{bmatrix} b\\\ 1 \end{bmatrix}+\bar{\chi}_{t}^{-1} \begin{bmatrix} \delta_{t}\\\ 0 \end{bmatrix}- \begin{bmatrix} b\\\ 1 \end{bmatrix}\\\ & = \text{Exp}(\xi_{t}^{L})^{-1} \begin{bmatrix} b\\\ 1 \end{bmatrix}+\bar{\chi}_{t}^{-1} \begin{bmatrix} \delta_{t}\\\ 0 \end{bmatrix}- \begin{bmatrix} b\\\ 1 \end{bmatrix}\\\ & = (\mathbf{I}-\xi_{t}^{L^{\wedge}}) \begin{bmatrix} b\\\ 1 \end{bmatrix}+\bar{\chi}_{t}^{-1} \begin{bmatrix} \delta_{t}\\\ 0 \end{bmatrix}- \begin{bmatrix} b\\\ 1 \end{bmatrix}\\\ & = -\xi_{t}^{L^{\wedge}} \begin{bmatrix} b\\\ 1 \end{bmatrix}+\bar{\chi}_{t}^{-1} \begin{bmatrix} \delta_{t}\\\ 0 \end{bmatrix}\\\ \Rightarrow z_{t} & = H_{t}\xi_{t}^{L}+V_{t}\delta_{t} \end{align}$$

where

$$H_{t} = \begin{bmatrix} -\mathbf{I} & 0 \end{bmatrix}\hspace{3ex}\text{and}\hspace{3ex}V_{t}=\bar{R}^{T}_{t}$$

You will obtain this result by removing the last row of zeros in these matries.

In addition, we have $\text{Exp}(\xi_{t}^{L})=\eta_{t}^{L}=\chi_{t}^{-1}\bar{\chi}_{t}$, which implies that $\chi_{t}=\bar{\chi}_{t}\text{Exp}(-\xi_{t}^{L})$. This suggest the update of $\chi_{t}$ is

$$\hat{\chi}_{t}=\check{\chi}_{t}\text{Exp}(-K_{t}z_{t}),$$

where $K_{t}=\check{\Sigma}_{t}H_{t}S_{t}^{-1}$ and $S_{t}=H_{t}\check{\Sigma}_{t}H_{t}^{T}+V_{t}R_{t}V_{t}^{T}$.

Thus, the updated state and error covariance are

$$\begin{align} \hat{\chi}_{t} & = \check{\chi}_{t}\text{Exp}(-K_{t}z_{t})\\\ \hat{\Sigma}_{t} & = (\mathbf{I}-K_{t}H_{t})\check{\Sigma}_{t} \end{align}$$

manif approach:

Define the innovation $z_{t}$ such that

$$\begin{align} z_{t} & = \bar{\chi}_{t}^{-1}\cdot (y_{t}-\bar{y}_{t})\\\ & = \bar{\chi}_{t}^{-1}\cdot y_{t}-b \end{align}$$

Now let $h(\chi)=(\bar{\chi}_{t}^{-1}\chi_{t})\cdot b$ and note that

$$\begin{align} \bar{\chi}_{t}^{-1}\cdot y_{t} &= \bar{\chi}_{t}^{-1}(\chi\cdot b+\delta_{t})\\\ & = \bar{\chi}_{t}^{-1}\chi_{t}\cdot b+\bar{\chi}_{t}^{-1}\cdot \delta_{t}\\\ & = h(\bar{\chi}_{t})+\left.\frac{\partial h}{\partial \chi}\right|_{\chi_{t}=\bar{\chi}_{t}}(\chi_{t}\ominus\bar{\chi}_{t})+\bar{\chi}_{t}^{-1}\cdot \delta_{t}\\\ & = b+H_{t}{}^{\mathcal{x}}\xi_{t}+\bar{\chi}_{t}^{-1}\cdot \delta_{t}\\\ \end{align}$$

So, we can rewrite the innovation as

$$z_{t} = H_{t}{}^{\mathcal{x}}\xi_{t}+V_{t}\delta_{t}\\$$

where

$$\begin{align} H_{t} &=\left.\frac{\partial h}{\partial \chi}\right|_{\chi_{t}=\bar{\chi}_{t}}\\\ & = \lim_{\chi_{t}\rightarrow \bar{\chi}_{t}}\frac{h(\chi_{t})-h(\bar{\chi}_{t})}{\chi_{t}\ominus \bar{\chi}_{t}}\\\ & = \lim_{{}^{\mathcal{x}}\xi_{t}\rightarrow 0}\frac{\text{Exp}({}^{\mathcal{x}}\xi_{t})\cdot b-b}{{}^{\mathcal{x}}\xi_{t}}\\\ & = \lim_{{}^{\mathcal{x}}\xi_{t}\rightarrow 0}\frac{(\mathbf{I}+{}^{\mathcal{x}}\xi_{t}^{\wedge})\cdot b-b}{{}^{\mathcal{x}}\xi_{t}}\\\ & = \lim_{{}^{\mathcal{x}}\xi_{t}\rightarrow 0}\frac{\phi^{\wedge}b+\rho}{{}^{\mathcal{x}}\xi_{t}}\\\ & = \begin{bmatrix} \left.\frac{\partial \phi^{\wedge}b+\rho}{\partial\rho}\right|_{\rho=0} & \left.\frac{\partial \phi^{\wedge}b+\rho}{\partial\phi}\right|_{\phi=0} & \end{bmatrix}\\\ & = \begin{bmatrix} \mathbf{I} & 0 \end{bmatrix} \end{align}$$

and $V_{t}=\bar{R}_{t}^{T}$. Again, the $H_{t}$ in manif approach is negation of $H_{t}$ in Axel and Silvere's approach. This difference arises due to the definition of the error ${}^{\mathcal{x}}\xi_{t}$.

Furthermore,, we have $\text{Exp}({}^{\mathcal{x}}\xi_{t})=\bar{\chi}_{t}^{-1}\chi_{t}$, which implies that $\chi_{t}=\bar{\chi}_{t}\text{Exp}({}^{\mathcal{x}}\xi_{t})$. This suggest the update of $\chi_{t}$ is

$$\hat{\chi}_{t}=\check{\chi}_{t}\text{Exp}(K_{t}z_{t}),$$

where $K_{t}=\check{\Sigma}_{t}H_{t}S_{t}^{-1}$ and $S_{t}=H_{t}\check{\Sigma}_{t}H_{t}^{T}+V_{t}R_{t}V_{t}^{T}$.

Thus, the updated state and error covariance are given by:

$$\begin{align} \hat{\chi}_{t} & = \check{\chi}_{t}\text{Exp}(K_{t}z_{t})\\\ \hat{\Sigma}_{t} & = (\mathbf{I}-K_{t}H_{t})\check{\Sigma}_{t} \end{align}$$

Summary:

Axel and Silvere Manif
error $\eta^{L}=\chi^{-1}\bar{\chi}$
$\text{Exp}(\xi^{L})=\chi^{-1}\bar{\chi}$
${}^{\mathcal{x}}\xi=\chi\ominus\bar{\chi}$
$\text{Exp}({}^{\mathcal{x}}\xi)=\bar{\chi}^{-1}\chi$
Predict $\check{\chi}_{t}=\hat{\chi}_{t-1}\oplus \mathbf{u}_{t}$
$\check{\Sigma}_{t}=F_{t}\hat{\Sigma}_{t-1}F_{t}^{T}+W_{t}Q_{t}W_{t}^{T}$
$\check{\chi}_{t}=\hat{\chi}_{t-1}\oplus \mathbf{u}_{t}$
$\check{\Sigma}_{t}=F_{t}\hat{\Sigma}_{t-1}F_{t}^{T}+W_{t}Q_{t}W_{t}^{T}$
Update $z_{t}=\bar{\chi}_{t}^{-1}\cdot(y_{t}-\bar{y}_{t})$
$S_{t}=H_{t}\check{\Sigma}_{t}H_{t}^{T}+V_{t}R_{t}V_{t}^{T}$
$K_{t}=\check{\Sigma}_{t}H_{t}^{T}S_{t}^{-1}$
$\hat{\chi}_{t}=\check{\chi}_{t}\text{Exp}(-K_{t}z_{t}).$
$\hat{\Sigma}_{t}=(\mathbf{I}-K_{t}H_{t})\check{\Sigma}_{t}$
$z_{t}=\bar{\chi}_{t}^{-1}\cdot(y_{t}-\bar{y}_{t})$
$S_{t}=H_{t}\check{\Sigma}_{t}H_{t}^{T}+V_{t}R_{t}V_{t}^{T}$
$K_{t}=\check{\Sigma}_{t}H_{t}^{T}S_{t}^{-1}$
$\hat{\chi}_{t}=\check{\chi}_{t}\text{Exp}(K_{t}z_{t}).$
$\hat{\Sigma}_{t}=(\mathbf{I}-K_{t}H_{t})\check{\Sigma}_{t}$

Noticing the sign difference in the update step, one should be very careful about how the error is defined when implementing the invariant kalman filter.

Also, in this example, since the state error in both of the predict step and the update step is left-invariant, there is no need to perform any covariance transformation from left-invariant to right-invariant or vice versa.

Copy link
Collaborator

@joansola joansola left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Comments about left-right invariances require answers from the author of the MR.

examples/se2_localization_liekf.cpp Outdated Show resolved Hide resolved
Comment on lines 239 to 238
H.topLeftCorner<2, 2>() = Matrix2d::Identity();
H.topRightCorner<2, 1>() = manif::skew(1.0) * X.translation();
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This comment I guess will not appear in the final commits.

examples/se2_localization_liekf.cpp Outdated Show resolved Hide resolved
@joansola joansola self-requested a review September 3, 2024 18:12
@Chris7462
Copy link
Author

Sorry forget to post the simulation results here. The results obtained from a 10 step simulation of this example is shown below

X STATE     :    X      Y    THETA
----------------------------------
X initial   : +0.000 +0.000 +0.000
----------------------------------
X simulated : +0.100 +0.000 +0.050
X estimated : +0.069 +0.041 -0.013
X unfilterd : +0.089 +0.091 -0.012
----------------------------------
X simulated : +0.200 -0.000 +0.100
X estimated : +0.139 -0.022 +0.094
X unfilterd : +0.131 +0.102 +0.100
----------------------------------
X simulated : +0.300 -0.000 +0.150
X estimated : +0.263 -0.010 +0.136
X unfilterd : +0.281 +0.103 +0.139
----------------------------------
X simulated : +0.400 -0.000 +0.200
X estimated : +0.416 +0.074 +0.079
X unfilterd : +0.370 +0.181 +0.090
----------------------------------
X simulated : +0.500 +0.000 +0.250
X estimated : +0.532 -0.004 +0.059
X unfilterd : +0.527 +0.166 +0.103
----------------------------------
X simulated : +0.600 -0.000 +0.300
X estimated : +0.657 +0.103 +0.073
X unfilterd : +0.684 +0.243 +0.083
----------------------------------
X simulated : +0.700 -0.000 +0.350
X estimated : +0.671 +0.025 +0.180
X unfilterd : +0.726 +0.140 +0.185
----------------------------------
X simulated : +0.800 -0.000 +0.400
X estimated : +0.712 +0.054 +0.347
X unfilterd : +0.776 +0.093 +0.330
----------------------------------
X simulated : +0.900 -0.000 +0.450
X estimated : +0.847 +0.132 +0.335
X unfilterd : +0.790 +0.141 +0.342
----------------------------------
X simulated : +1.000 +0.000 +0.500
X estimated : +1.050 +0.036 +0.482
X unfilterd : +0.968 +0.030 +0.455
----------------------------------

@joansola
Copy link
Collaborator

joansola commented Sep 3, 2024

These results are non conclusive. The unfiltered solution has basically the same error as the filtered one, meaning that the filter did not do a great job.

You should try to tune the noises so that an unfiltered solution departs more from the nominal trajectory. Then we can evaluate the effect of the filter. As it is now, the filter has no effect and we cannot assess if it is working correctly or not.

You can also try. with a longer experiment to give time to the noisy unfiltered trajectory to deviate from the nominal one.

@Chris7462
Copy link
Author

I have increased the number of steps from 10 to 50 while keeping all the noise levels the same. I observed that there are instances where the values of $\theta$ deviate from the true value. This deviation occurs because we only have position measurements to correct the translation, but no measurement for the rotation. Additionally, since there is only one measurement per step, the fusion results would likely improve if there were multiple measurements (e.g., from landmarks) at each step.

X STATE     :    X      Y    THETA
----------------------------------
X initial   : +0.000 +0.000 +0.000
----------------------------------
X simulated : +0.100 +0.000 +0.050
X estimated : +0.026 +0.002 +0.029
X unfilterd : +0.003 -0.053 +0.028
----------------------------------
X simulated : +0.200 -0.000 +0.100
X estimated : +0.184 -0.022 +0.002
X unfilterd : +0.157 -0.023 +0.010
----------------------------------
X simulated : +0.300 -0.000 +0.150
X estimated : +0.373 -0.045 -0.006
X unfilterd : +0.340 -0.007 +0.015
----------------------------------
X simulated : +0.400 -0.000 +0.200
X estimated : +0.346 +0.014 +0.151
X unfilterd : +0.357 -0.048 +0.156
----------------------------------
X simulated : +0.500 +0.000 +0.250
X estimated : +0.486 +0.059 +0.116
X unfilterd : +0.410 -0.014 +0.125
----------------------------------
X simulated : +0.600 -0.000 +0.300
X estimated : +0.605 +0.130 +0.169
X unfilterd : +0.596 +0.088 +0.170
----------------------------------
X simulated : +0.700 -0.000 +0.350
X estimated : +0.680 +0.102 +0.129
X unfilterd : +0.754 +0.073 +0.138
----------------------------------
X simulated : +0.800 -0.000 +0.400
X estimated : +0.749 +0.144 +0.096
X unfilterd : +0.921 +0.179 +0.127
----------------------------------
X simulated : +0.900 -0.000 +0.450
X estimated : +0.884 +0.179 +0.206
X unfilterd : +0.999 +0.206 +0.270
----------------------------------
X simulated : +1.000 +0.000 +0.500
X estimated : +1.076 +0.226 +0.181
X unfilterd : +1.192 +0.277 +0.269
----------------------------------
X simulated : +1.100 +0.000 +0.550
X estimated : +1.048 +0.216 +0.241
X unfilterd : +1.218 +0.204 +0.304
----------------------------------
X simulated : +1.200 +0.000 +0.600
X estimated : +1.158 +0.081 +0.407
X unfilterd : +1.265 +0.048 +0.440
----------------------------------
X simulated : +1.300 +0.000 +0.650
X estimated : +1.352 +0.045 +0.532
X unfilterd : +1.433 -0.005 +0.536
----------------------------------
X simulated : +1.400 +0.000 +0.700
X estimated : +1.400 +0.103 +0.599
X unfilterd : +1.477 +0.025 +0.584
----------------------------------
X simulated : +1.500 +0.000 +0.750
X estimated : +1.549 +0.118 +0.618
X unfilterd : +1.635 +0.071 +0.678
----------------------------------
X simulated : +1.600 -0.000 +0.800
X estimated : +1.640 +0.224 +0.582
X unfilterd : +1.717 +0.185 +0.663
----------------------------------
X simulated : +1.700 -0.000 +0.850
X estimated : +1.673 +0.282 +0.502
X unfilterd : +1.873 +0.358 +0.618
----------------------------------
X simulated : +1.800 -0.000 +0.900
X estimated : +1.798 +0.323 +0.448
X unfilterd : +2.051 +0.439 +0.595
----------------------------------
X simulated : +1.900 -0.000 +0.950
X estimated : +1.832 +0.340 +0.566
X unfilterd : +2.160 +0.467 +0.634
----------------------------------
X simulated : +2.000 -0.000 +1.000
X estimated : +1.925 +0.358 +0.568
X unfilterd : +2.350 +0.530 +0.645
----------------------------------
X simulated : +2.100 -0.000 +1.050
X estimated : +2.027 +0.239 +0.710
X unfilterd : +2.422 +0.362 +0.768
----------------------------------
X simulated : +2.200 -0.000 +1.100
X estimated : +2.077 +0.315 +0.700
X unfilterd : +2.479 +0.413 +0.723
----------------------------------
X simulated : +2.300 -0.000 +1.150
X estimated : +2.261 +0.428 +0.752
X unfilterd : +2.619 +0.525 +0.676
----------------------------------
X simulated : +2.400 +0.000 +1.200
X estimated : +2.241 +0.484 +0.805
X unfilterd : +2.618 +0.547 +0.706
----------------------------------
X simulated : +2.500 -0.000 +1.250
X estimated : +2.337 +0.521 +0.754
X unfilterd : +2.703 +0.597 +0.728
----------------------------------
X simulated : +2.600 +0.000 +1.300
X estimated : +2.444 +0.499 +0.900
X unfilterd : +2.879 +0.655 +0.793
----------------------------------
X simulated : +2.700 +0.000 +1.350
X estimated : +2.563 +0.381 +1.007
X unfilterd : +3.058 +0.536 +0.887
----------------------------------
X simulated : +2.800 -0.000 +1.400
X estimated : +2.696 +0.474 +1.008
X unfilterd : +3.221 +0.608 +0.930
----------------------------------
X simulated : +2.900 +0.000 +1.450
X estimated : +2.818 +0.420 +1.142
X unfilterd : +3.371 +0.543 +1.037
----------------------------------
X simulated : +3.000 -0.000 +1.500
X estimated : +2.896 +0.437 +1.252
X unfilterd : +3.491 +0.601 +1.063
----------------------------------
X simulated : +3.100 -0.000 +1.550
X estimated : +2.956 +0.370 +1.309
X unfilterd : +3.536 +0.505 +1.129
----------------------------------
X simulated : +3.200 -0.000 +1.600
X estimated : +3.071 +0.365 +1.382
X unfilterd : +3.676 +0.499 +1.155
----------------------------------
X simulated : +3.300 +0.000 +1.650
X estimated : +3.185 +0.296 +1.476
X unfilterd : +3.850 +0.413 +1.279
----------------------------------
X simulated : +3.400 +0.000 +1.700
X estimated : +3.273 +0.404 +1.455
X unfilterd : +4.011 +0.584 +1.243
----------------------------------
X simulated : +3.500 +0.000 +1.750
X estimated : +3.365 +0.413 +1.514
X unfilterd : +4.098 +0.637 +1.200
----------------------------------
X simulated : +3.600 +0.000 +1.800
X estimated : +3.440 +0.523 +1.565
X unfilterd : +4.186 +0.718 +1.226
----------------------------------
X simulated : +3.700 +0.000 +1.850
X estimated : +3.571 +0.423 +1.591
X unfilterd : +4.312 +0.588 +1.267
----------------------------------
X simulated : +3.800 +0.000 +1.900
X estimated : +3.764 +0.248 +1.782
X unfilterd : +4.572 +0.443 +1.384
----------------------------------
X simulated : +3.900 +0.000 +1.950
X estimated : +3.873 +0.150 +1.876
X unfilterd : +4.715 +0.375 +1.406
----------------------------------
X simulated : +4.000 +0.000 +2.000
X estimated : +4.084 -0.035 +2.011
X unfilterd : +4.952 +0.111 +1.538
----------------------------------
X simulated : +4.100 +0.000 +2.050
X estimated : +4.182 -0.313 +2.182
X unfilterd : +5.121 -0.179 +1.640
----------------------------------
X simulated : +4.200 +0.000 +2.100
X estimated : +4.209 +0.050 +2.065
X unfilterd : +5.107 +0.052 +1.601
----------------------------------
X simulated : +4.300 -0.000 +2.150
X estimated : +4.507 -0.212 +2.267
X unfilterd : +5.423 -0.216 +1.738
----------------------------------
X simulated : +4.400 -0.000 +2.200
X estimated : +4.561 -0.232 +2.325
X unfilterd : +5.517 -0.181 +1.744
----------------------------------
X simulated : +4.500 -0.000 +2.250
X estimated : +4.691 -0.208 +2.394
X unfilterd : +5.686 -0.275 +1.839
----------------------------------
X simulated : +4.600 -0.000 +2.300
X estimated : +4.628 -0.058 +2.364
X unfilterd : +5.645 -0.128 +1.821
----------------------------------
X simulated : +4.700 -0.000 +2.350
X estimated : +4.779 -0.054 +2.395
X unfilterd : +5.850 -0.201 +1.895
----------------------------------
X simulated : +4.800 -0.000 +2.400
X estimated : +4.943 +0.011 +2.395
X unfilterd : +6.088 -0.237 +1.941
----------------------------------
X simulated : +4.900 -0.000 +2.450
X estimated : +5.012 -0.322 +2.584
X unfilterd : +6.193 -0.582 +2.088
----------------------------------
X simulated : +5.000 -0.000 +2.500
X estimated : +5.116 -0.055 +2.570
X unfilterd : +6.315 -0.607 +2.160
----------------------------------

@joansola
Copy link
Collaborator

joansola commented Sep 3, 2024

You can increase the process noise, e.g. by a factor 10 (cov by a factor 100), and/or reduce the measurement noise, by the same factor. This way you emphasize the effect of the GNSS corrections.

With the longer simu, things start to be visible. But I think more evidence is needed. Try one or both of the ideas above. Keep the length the same as in the long run you did now.

@Chris7462
Copy link
Author

Thank you. I increased the control noise by a factor of 10 and reduced the measurement noise by a factor of 10. Here are the results from the new simulation. I appreciate your insight.

X STATE     :    X      Y    THETA
----------------------------------
X initial   : +0.000 +0.000 +0.000
----------------------------------
X simulated : +0.100 +0.000 +0.050
X estimated : +0.098 +0.002 -0.050
X unfilterd : +0.367 -0.929 -0.050
----------------------------------
X simulated : +0.200 -0.000 +0.100
X estimated : +0.193 -0.002 +0.057
X unfilterd : -0.468 -1.441 +0.056
----------------------------------
X simulated : +0.300 -0.000 +0.150
X estimated : +0.304 -0.001 +0.172
X unfilterd : -0.754 -2.151 +0.168
----------------------------------
X simulated : +0.400 -0.000 +0.200
X estimated : +0.410 -0.016 +0.297
X unfilterd : +0.236 -2.397 +0.293
----------------------------------
X simulated : +0.500 +0.000 +0.250
X estimated : +0.498 -0.009 +0.298
X unfilterd : -0.095 -2.089 +0.295
----------------------------------
X simulated : +0.600 -0.000 +0.300
X estimated : +0.608 +0.013 +0.259
X unfilterd : +0.685 -2.124 +0.256
----------------------------------
X simulated : +0.700 -0.000 +0.350
X estimated : +0.705 +0.014 +0.334
X unfilterd : +1.052 -2.031 +0.330
----------------------------------
X simulated : +0.800 -0.000 +0.400
X estimated : +0.804 +0.037 +0.322
X unfilterd : +0.095 -1.695 +0.322
----------------------------------
X simulated : +0.900 -0.000 +0.450
X estimated : +0.885 +0.079 +0.291
X unfilterd : +0.055 -2.475 +0.286
----------------------------------
X simulated : +1.000 +0.000 +0.500
X estimated : +0.985 +0.101 +0.276
X unfilterd : +0.676 -3.075 +0.265
----------------------------------
X simulated : +1.100 +0.000 +0.550
X estimated : +1.080 +0.094 +0.375
X unfilterd : +1.393 -2.216 +0.367
----------------------------------
X simulated : +1.200 +0.000 +0.600
X estimated : +1.187 +0.084 +0.473
X unfilterd : +1.388 -3.270 +0.457
----------------------------------
X simulated : +1.300 +0.000 +0.650
X estimated : +1.296 +0.090 +0.518
X unfilterd : +1.171 -4.091 +0.495
----------------------------------
X simulated : +1.400 +0.000 +0.700
X estimated : +1.388 +0.091 +0.572
X unfilterd : +0.755 -3.348 +0.556
----------------------------------
X simulated : +1.500 +0.000 +0.750
X estimated : +1.487 +0.046 +0.677
X unfilterd : +0.390 -2.469 +0.670
----------------------------------
X simulated : +1.600 -0.000 +0.800
X estimated : +1.594 +0.090 +0.691
X unfilterd : +0.933 -2.790 +0.678
----------------------------------
X simulated : +1.700 -0.000 +0.850
X estimated : +1.686 +0.069 +0.781
X unfilterd : +0.496 -2.430 +0.772
----------------------------------
X simulated : +1.800 -0.000 +0.900
X estimated : +1.811 -0.010 +0.920
X unfilterd : +1.335 -1.981 +0.913
----------------------------------
X simulated : +1.900 -0.000 +0.950
X estimated : +1.885 +0.068 +0.889
X unfilterd : +1.685 -0.704 +0.890
----------------------------------
X simulated : +2.000 -0.000 +1.000
X estimated : +1.996 +0.004 +0.994
X unfilterd : +2.414 +0.038 +1.000
----------------------------------
X simulated : +2.100 -0.000 +1.050
X estimated : +2.081 +0.061 +0.992
X unfilterd : +1.997 +0.987 +1.007
----------------------------------
X simulated : +2.200 -0.000 +1.100
X estimated : +2.202 +0.003 +1.097
X unfilterd : +1.539 +1.705 +1.122
----------------------------------
X simulated : +2.300 -0.000 +1.150
X estimated : +2.294 -0.014 +1.156
X unfilterd : +2.442 +1.166 +1.174
----------------------------------
X simulated : +2.400 +0.000 +1.200
X estimated : +2.407 -0.080 +1.261
X unfilterd : +2.669 +0.834 +1.276
----------------------------------
X simulated : +2.500 -0.000 +1.250
X estimated : +2.501 +0.025 +1.225
X unfilterd : +3.474 +0.875 +1.235
----------------------------------
X simulated : +2.600 +0.000 +1.300
X estimated : +2.576 +0.094 +1.224
X unfilterd : +3.883 +2.068 +1.240
----------------------------------
X simulated : +2.700 +0.000 +1.350
X estimated : +2.673 +0.126 +1.251
X unfilterd : +4.508 +1.730 +1.261
----------------------------------
X simulated : +2.800 -0.000 +1.400
X estimated : +2.765 +0.116 +1.306
X unfilterd : +5.640 +1.867 +1.310
----------------------------------
X simulated : +2.900 +0.000 +1.450
X estimated : +2.838 +0.249 +1.276
X unfilterd : +5.401 +1.544 +1.279
----------------------------------
X simulated : +3.000 -0.000 +1.500
X estimated : +2.889 +0.351 +1.264
X unfilterd : +5.492 +0.933 +1.262
----------------------------------
X simulated : +3.100 -0.000 +1.550
X estimated : +3.023 +0.256 +1.383
X unfilterd : +4.822 +0.900 +1.390
----------------------------------
X simulated : +3.200 -0.000 +1.600
X estimated : +3.140 +0.228 +1.457
X unfilterd : +5.297 +0.270 +1.456
----------------------------------
X simulated : +3.300 +0.000 +1.650
X estimated : +3.187 +0.322 +1.446
X unfilterd : +6.335 +0.728 +1.439
----------------------------------
X simulated : +3.400 +0.000 +1.700
X estimated : +3.294 +0.329 +1.506
X unfilterd : +7.229 +0.448 +1.489
----------------------------------
X simulated : +3.500 +0.000 +1.750
X estimated : +3.366 +0.372 +1.527
X unfilterd : +7.401 +0.402 +1.509
----------------------------------
X simulated : +3.600 +0.000 +1.800
X estimated : +3.451 +0.426 +1.556
X unfilterd : +6.330 +0.437 +1.551
----------------------------------
X simulated : +3.700 +0.000 +1.850
X estimated : +3.594 +0.326 +1.666
X unfilterd : +5.787 -0.419 +1.664
----------------------------------
X simulated : +3.800 +0.000 +1.900
X estimated : +3.597 +0.496 +1.627
X unfilterd : +6.022 -0.249 +1.622
----------------------------------
X simulated : +3.900 +0.000 +1.950
X estimated : +3.698 +0.487 +1.685
X unfilterd : +7.601 -0.199 +1.668
----------------------------------
X simulated : +4.000 +0.000 +2.000
X estimated : +3.784 +0.493 +1.741
X unfilterd : +7.422 +0.483 +1.729
----------------------------------
X simulated : +4.100 +0.000 +2.050
X estimated : +3.888 +0.502 +1.788
X unfilterd : +7.245 +0.664 +1.781
----------------------------------
X simulated : +4.200 +0.000 +2.100
X estimated : +3.900 +0.654 +1.769
X unfilterd : +6.774 +1.942 +1.769
----------------------------------
X simulated : +4.300 -0.000 +2.150
X estimated : +4.071 +0.514 +1.893
X unfilterd : +6.983 +0.755 +1.890
----------------------------------
X simulated : +4.400 -0.000 +2.200
X estimated : +4.204 +0.458 +1.982
X unfilterd : +7.374 +0.936 +1.978
----------------------------------
X simulated : +4.500 -0.000 +2.250
X estimated : +4.333 +0.394 +2.072
X unfilterd : +7.648 +1.671 +2.071
----------------------------------
X simulated : +4.600 -0.000 +2.300
X estimated : +4.460 +0.281 +2.171
X unfilterd : +8.422 -0.089 +2.162
----------------------------------
X simulated : +4.700 -0.000 +2.350
X estimated : +4.662 +0.112 +2.304
X unfilterd : +9.800 -0.398 +2.286
----------------------------------
X simulated : +4.800 -0.000 +2.400
X estimated : +4.847 -0.142 +2.457
X unfilterd : +10.900  -2.372  +2.431
----------------------------------
X simulated : +4.900 -0.000 +2.450
X estimated : +4.961 -0.135 +2.508
X unfilterd : +10.757  -3.081  +2.481
----------------------------------
X simulated : +5.000 -0.000 +2.500
X estimated : +4.949 +0.101 +2.459
X unfilterd : +10.223  -1.784  +2.439
----------------------------------

@joansola
Copy link
Collaborator

joansola commented Sep 3, 2024

The orientation should be observable through the combination of motion model (which has a sense of direction of the robot) and the GPS. As long as the angular process noise is not too large, the orientation should be observable.

You can reduce angular process noise by 10 and try over. We want to see that the unfiltered one diverges unboundedly (even if slowly slowly) while the filtered one stays close to the nominal. This is not yet visible in your results.

Also please report the tuning values of u_sigma and y_sigma.

Position estimates X and Y do converge to the nominal values, so they are good.

@Chris7462
Copy link
Author

Could you please check if the result make sense? I have changed only the value of $\theta$ ranging from 0.05, 0.1, 0.5, to 1.0 in the control.

u_nom    << 0.1, 0.0, 0.1;            u_nom    << 0.1, 0.0, 0.1;  u_nom    << 0.1, 0.0, 0.1;  u_nom    << 0.1, 0.0, 0.1;									
u_sigmas << 1.0, 1.0, 0.05;           u_sigmas << 1.0, 1.0, 0.1;  u_sigmas << 1.0, 1.0, 0.5;  u_sigmas << 1.0, 1.0, 1.0;
y_sigmas << 0.01, 0.01;               y_sigmas << 0.01, 0.01;     y_sigmas << 0.01, 0.01;     y_sigmas << 0.01, 0.01;

X STATE     :    X      Y    THETA    :    X      Y    THETA      :    X      Y    THETA      :    X      Y    THETA
----------------------------------    ----------------------      ----------------------      ----------------------
X initial   : +0.000 +0.000 +0.000    : +0.000 +0.000 +0.000      : +0.000 +0.000 +0.000      : +0.000 +0.000 +0.000
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +0.100 +0.000 +0.100    : +0.100 +0.000 +0.100      : +0.100 +0.000 +0.100      : +0.100 +0.000 +0.100
X estimated : +0.106 +0.007 +0.131    : +0.102 -0.011 +0.142      : +0.087 -0.029 +0.571      : +0.099 -0.029 +0.684
X unfilterd : +0.722 +0.566 +0.131    : +0.005 -0.897 +0.141      : +0.988 -0.755 +0.550      : +0.399 +0.035 +0.685
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +0.200 -0.000 +0.200    : +0.200 -0.000 +0.200      : +0.200 -0.000 +0.200      : +0.200 -0.000 +0.200
X estimated : +0.209 -0.003 +0.244    : +0.203 -0.005 +0.280      : +0.195 -0.029 +0.298      : +0.193 -0.004 +0.221
X unfilterd : +1.491 +0.786 +0.244    : -0.770 -1.866 +0.278      : +0.364 +0.167 +0.306      : +1.312 -0.338 +0.219
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +0.300 +0.000 +0.300    : +0.300 +0.000 +0.300      : +0.300 +0.000 +0.300      : +0.300 +0.000 +0.300
X estimated : +0.304 +0.002 +0.338    : +0.298 -0.024 +0.456      : +0.287 -0.021 +0.422      : +0.302 +0.025 +0.170
X unfilterd : +1.787 +0.444 +0.338    : -1.719 -0.916 +0.456      : -0.083 -0.190 +0.419      : +1.974 -0.104 +0.177
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +0.400 +0.000 +0.400    : +0.400 +0.000 +0.400      : +0.400 +0.000 +0.400      : +0.400 +0.000 +0.400
X estimated : +0.393 +0.001 +0.391    : +0.398 -0.035 +0.583      : +0.384 +0.067 -0.007      : +0.380 -0.159 +1.139
X unfilterd : +1.853 +1.090 +0.391    : -1.731 -0.409 +0.584      : -0.426 +0.405 +0.038      : +2.019 -1.326 +1.108
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +0.500 +0.000 +0.500    : +0.500 +0.000 +0.500      : +0.500 +0.000 +0.500      : +0.500 +0.000 +0.500
X estimated : +0.507 -0.013 +0.514    : +0.501 -0.072 +0.777      : +0.484 +0.068 +0.231      : +0.431 -0.295 +1.765
X unfilterd : +2.698 +0.496 +0.514    : -1.761 -0.697 +0.776      : +0.552 +1.096 +0.277      : +1.079 -2.486 +1.637
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +0.600 +0.000 +0.600    : +0.600 +0.000 +0.600      : +0.600 +0.000 +0.600      : +0.600 +0.000 +0.600
X estimated : +0.591 -0.014 +0.629    : +0.607 -0.083 +0.889      : +0.552 +0.201 -0.092      : +0.314 -0.754 +2.853
X unfilterd : +2.484 -0.129 +0.629    : -2.010 +0.034 +0.891      : -0.310 +0.385 -0.052      : -0.698 -4.126 +2.610
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +0.700 +0.000 +0.700    : +0.700 +0.000 +0.700      : +0.700 +0.000 +0.700      : +0.700 +0.000 +0.700
X estimated : +0.708 -0.021 +0.768    : +0.707 -0.124 +1.050      : +0.643 +0.225 +0.038      : -0.293 +1.009 -3.068
X unfilterd : +3.151 +0.868 +0.769    : -1.484 +1.577 +1.060      : -0.641 +0.119 +0.077      : -1.715 -3.281 +3.005
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +0.800 +0.000 +0.800    : +0.800 +0.000 +0.800      : +0.800 +0.000 +0.800      : +0.800 +0.000 +0.800
X estimated : +0.803 -0.019 +0.849    : +0.809 -0.155 +1.175      : +0.744 +0.218 +0.215      : +0.554 -0.987 +2.900
X unfilterd : +3.940 +1.192 +0.851    : -0.789 +2.623 +1.189      : -1.213 +0.049 +0.267      : -0.778 -3.930 +2.647
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +0.900 +0.000 +0.900    : +0.900 +0.000 +0.900      : +0.900 +0.000 +0.900      : +0.900 +0.000 +0.900
X estimated : +0.905 -0.037 +0.987    : +0.905 -0.165 +1.250      : +0.862 +0.154 +0.537      : +0.831 -0.649 +2.266
X unfilterd : +5.407 +0.532 +0.987    : -1.270 +2.871 +1.267      : -0.548 +0.344 +0.565      : +1.147 -3.173 +2.086
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +1.000 +0.000 +1.000    : +1.000 +0.000 +1.000      : +1.000 +0.000 +1.000      : +1.000 +0.000 +1.000
X estimated : +1.007 -0.052 +1.085    : +1.013 -0.219 +1.409      : +0.945 +0.241 +0.493      : +0.962 -0.407 +1.735
X unfilterd : +5.641 +1.392 +1.086    : -0.563 +3.891 +1.431      : +0.039 +0.752 +0.518      : +1.827 -1.719 +1.658
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +1.100 +0.000 +1.100    : +1.100 +0.000 +1.100      : +1.100 +0.000 +1.100      : +1.100 +0.000 +1.100
X estimated : +1.109 -0.038 +1.166    : +1.120 -0.211 +1.467      : +1.003 +0.337 +0.463      : +1.111 -0.403 +1.752
X unfilterd : +6.469 +1.821 +1.168    : -1.148 +4.497 +1.495      : +0.552 +1.369 +0.485      : +1.059 -1.444 +1.732
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +1.200 +0.000 +1.200    : +1.200 +0.000 +1.200      : +1.200 +0.000 +1.200      : +1.200 +0.000 +1.200
X estimated : +1.197 -0.062 +1.296    : +1.220 -0.190 +1.507      : +0.977 +0.581 +0.109      : +1.119 -0.804 +2.393
X unfilterd : +6.198 +2.127 +1.300    : -1.119 +5.423 +1.541      : +1.134 +1.604 +0.100      : +0.788 -3.054 +2.264
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +1.300 +0.000 +1.300    : +1.300 +0.000 +1.300      : +1.300 +0.000 +1.300      : +1.300 +0.000 +1.300
X estimated : +1.329 -0.099 +1.446    : +1.340 -0.185 +1.579      : +0.954 +0.753 -0.045      : +1.191 -1.280 +2.893
X unfilterd : +7.916 +1.533 +1.448    : -1.234 +4.419 +1.604      : +0.972 +1.158 -0.060      : -0.446 -2.200 +2.819
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +1.400 +0.000 +1.400    : +1.400 +0.000 +1.400      : +1.400 +0.000 +1.400      : +1.400 +0.000 +1.400
X estimated : +1.408 -0.090 +1.530    : +1.437 -0.221 +1.702      : +1.152 +0.536 +0.515      : -0.796 +1.578 -2.703
X unfilterd : +8.157 +1.902 +1.532    : -0.690 +5.790 +1.734      : +2.025 +0.077 +0.447      : +1.472 +0.634 -2.745
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +1.500 +0.000 +1.500    : +1.500 +0.000 +1.500      : +1.500 +0.000 +1.500      : +1.500 +0.000 +1.500
X estimated : +1.518 -0.084 +1.602    : +1.529 -0.179 +1.721      : +1.396 +0.305 +1.071      : -1.316 +1.580 -3.016
X unfilterd : +8.241 +2.999 +1.608    : -1.815 +5.621 +1.756      : +1.732 -1.122 +0.978      : +2.449 +1.276 -3.086
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +1.600 +0.000 +1.600    : +1.600 +0.000 +1.600      : +1.600 +0.000 +1.600      : +1.600 +0.000 +1.600
X estimated : +1.613 -0.069 +1.683    : +1.649 -0.208 +1.866      : +1.352 +0.580 +0.781      : -1.029 +1.663 -2.673
X unfilterd : +9.188 +3.454 +1.689    : -1.395 +5.208 +1.896      : +1.611 -0.472 +0.714      : +2.183 +1.628 -2.800
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +1.700 +0.000 +1.700    : +1.700 +0.000 +1.700      : +1.700 +0.000 +1.700      : +1.700 +0.000 +1.700
X estimated : +1.741 -0.105 +1.824    : +1.767 -0.261 +2.007      : +1.330 +0.762 +0.669      : +1.818 -1.023 +2.694
X unfilterd : +9.905 +2.558 +1.828    : -0.539 +5.902 +2.038      : +2.029 -0.033 +0.574      : -2.070 -1.881 +2.661
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +1.800 +0.000 +1.800    : +1.800 +0.000 +1.800      : +1.800 +0.000 +1.800      : +1.800 +0.000 +1.800
X estimated : +1.835 -0.145 +1.960    : +1.868 -0.309 +2.122      : +1.347 +0.824 +0.700      : -1.056 +1.739 -2.450
X unfilterd : +10.770  +1.416  +1.963 : -1.142 +5.692 +2.155      : +1.128 +0.568 +0.651      : +2.059 +0.950 -2.559
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +1.900 +0.000 +1.900    : +1.900 +0.000 +1.900      : +1.900 +0.000 +1.900      : +1.900 +0.000 +1.900
X estimated : +1.939 -0.156 +2.045    : +1.970 -0.271 +2.175      : +1.217 +1.099 +0.427      : +2.071 -1.460 +3.120
X unfilterd : +12.221  +1.377  +2.046 : -0.173 +6.663 +2.208      : +0.837 +0.750 +0.393      : -2.680 -3.166 +3.003
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +2.000 +0.000 +2.000    : +2.000 +0.000 +2.000      : +2.000 +0.000 +2.000      : +2.000 +0.000 +2.000
X estimated : +2.057 -0.170 +2.166    : +2.067 -0.201 +2.188      : +1.350 +1.062 +0.668      : +2.116 -0.384 +2.350
X unfilterd : +12.055  +0.006  +2.168 : +0.293 +5.679 +2.213      : +1.238 +0.644 +0.606      : -1.671 -3.108 +2.293
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +2.100 +0.000 +2.100    : +2.100 +0.000 +2.100      : +2.100 +0.000 +2.100      : +2.100 +0.000 +2.100
X estimated : +2.151 -0.182 +2.270    : +2.167 -0.217 +2.293      : +1.123 +1.318 +0.347      : +2.311 -0.849 +2.800
X unfilterd : +13.226  +0.200  +2.270 : -0.257 +6.112 +2.325      : +0.183 +1.011 +0.336      : -3.458 -3.378 +2.749
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +2.200 +0.000 +2.200    : +2.200 +0.000 +2.200      : +2.200 +0.000 +2.200      : +2.200 +0.000 +2.200
X estimated : +2.272 -0.196 +2.377    : +2.291 -0.231 +2.407      : +1.096 +1.407 +0.371      : -2.235 +1.403 -2.974
X unfilterd : +14.939  +0.086  +2.374 : -0.399 +6.854 +2.446      : +0.604 +0.897 +0.333      : +4.817 +1.861 -2.968
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +2.300 +0.000 +2.300    : +2.300 +0.000 +2.300      : +2.300 +0.000 +2.300      : +2.300 +0.000 +2.300
X estimated : +2.394 -0.256 +2.507    : +2.364 -0.207 +2.474      : +1.384 +1.235 +0.824      : -1.525 +1.742 -2.296
X unfilterd : +15.433  +0.187  +2.506 : +0.978 +6.423 +2.503      : +1.745 +0.889 +0.722      : +5.319 -1.007 -2.273
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +2.400 +0.000 +2.400    : +2.400 +0.000 +2.400      : +2.400 +0.000 +2.400      : +2.400 +0.000 +2.400
X estimated : +2.509 -0.280 +2.618    : +2.522 -0.315 +2.645      : +1.441 +1.262 +0.953      : -2.236 +1.378 -2.784
X unfilterd : +17.010  -0.169  +2.615 : +1.884 +5.339 +2.666      : +2.579 +0.694 +0.802      : +5.785 -0.389 -2.729
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +2.500 +0.000 +2.500    : +2.500 +0.000 +2.500      : +2.500 +0.000 +2.500      : +2.500 +0.000 +2.500
X estimated : +2.618 -0.285 +2.721    : +2.689 -0.441 +2.835      : +1.849 +0.972 +1.528      : -2.770 +1.012 -3.095
X unfilterd : +17.802  +0.106  +2.718 : +2.593 +6.539 +2.860      : +2.587 +0.110 +1.395      : +6.842 +0.412 -2.990
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +2.600 +0.000 +2.600    : +2.600 +0.000 +2.600      : +2.600 +0.000 +2.600      : +2.600 +0.000 +2.600
X estimated : +2.768 -0.352 +2.860    : +2.843 -0.624 +3.034      : +2.073 +0.796 +1.868      : +2.719 -0.269 +2.780
X unfilterd : +18.910  -1.005  +2.856 : +3.972 +5.797 +3.053      : +3.298 -0.853 +1.691      : -5.191 -0.907 +2.859
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +2.700 +0.000 +2.700    : +2.700 +0.000 +2.700      : +2.700 +0.000 +2.700      : +2.700 +0.000 +2.700
X estimated : +2.850 -0.339 +2.926    : -2.877 +0.764 -3.062      : +2.080 +0.868 +1.890      : +2.241 +0.733 +2.066
X unfilterd : +20.179  -1.848  +2.920 : -4.098 -6.092 -3.037      : +4.125 -1.099 +1.672      : -2.834 -3.271 +2.159
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +2.800 +0.000 +2.800    : +2.800 +0.000 +2.800      : +2.800 +0.000 +2.800      : +2.800 +0.000 +2.800
X estimated : +2.949 -0.331 +3.016    : -2.720 +0.863 -2.879      : +2.147 +0.920 +1.984      : +1.609 +1.404 +1.373
X unfilterd : +19.520  -3.545  +3.013 : -3.510 -4.825 -2.851      : +3.728 -2.212 +1.786      : -1.216 -3.829 +1.469
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +2.900 +0.000 +2.900    : +2.900 +0.000 +2.900      : +2.900 +0.000 +2.900      : +2.900 +0.000 +2.900
X estimated : +3.081 -0.368 +3.132    : -2.768 +0.730 -2.859      : +2.361 +0.769 +2.260      : +1.538 +1.499 +1.333
X unfilterd : +19.830  -3.321  +3.130 : -3.994 -5.756 -2.831      : +4.208 -2.418 +2.025      : -1.062 -4.987 +1.464
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +3.000 +0.000 +3.000    : +3.000 +0.000 +3.000      : +3.000 +0.000 +3.000      : +3.000 +0.000 +3.000
X estimated : -3.017 +0.353 -3.054    : -2.662 +0.795 -2.716      : +2.768 +0.349 +2.746      : +1.272 +1.675 +1.153
X unfilterd : -19.137  +5.370  -3.056 : -5.403 -4.678 -2.698      : +3.942 -4.575 +2.500      : -0.704 -4.868 +1.282
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : +3.100 +0.000 +3.100    : +3.100 +0.000 +3.100      : +3.100 +0.000 +3.100      : +3.100 +0.000 +3.100
X estimated : -2.946 +0.348 -2.946    : -2.657 +0.709 -2.657      : +2.582 +0.673 +2.581      : +2.113 +1.096 +2.115
X unfilterd : -18.020  +5.076  -2.946 : -4.727 -3.732 -2.634      : +5.182 -4.663 +2.297      : -1.917 -4.944 +2.130
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : -3.083 -0.000 -3.083    : -3.083 -0.000 -3.083      : -3.083 -0.000 -3.083      : -3.083 -0.000 -3.083
X estimated : -2.881 +0.296 -2.886    : -2.636 +0.622 -2.613      : +2.833 +0.511 +2.839      : +2.717 +0.611 +2.735
X unfilterd : -16.227  +4.247  -2.883 : -5.132 -2.807 -2.595      : +3.984 -5.460 +2.594      : -4.905 -4.387 +2.820
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : -2.983 -0.000 -2.983    : -2.983 -0.000 -2.983      : -2.983 -0.000 -2.983      : -2.983 -0.000 -2.983
X estimated : -2.818 +0.242 -2.803    : -2.592 +0.556 -2.556      : +2.382 +1.045 +2.460      : +3.075 +0.326 +3.075
X unfilterd : -16.239  +3.306  -2.801 : -4.543 -2.006 -2.533      : +3.868 -4.472 +2.251      : +6.885 +4.276 -3.061
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : -2.883 -0.000 -2.883    : -2.883 -0.000 -2.883      : -2.883 -0.000 -2.883      : -2.883 -0.000 -2.883
X estimated : -2.790 +0.178 -2.749    : -2.468 +0.621 -2.388      : +2.761 +0.744 +2.852      : -2.493 +0.608 -2.401
X unfilterd : -16.468  +3.002  -2.749 : -4.427 -1.586 -2.364      : +2.085 -6.157 +2.692      : +6.918 +1.787 -2.248
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : -2.783 -0.000 -2.783    : -2.783 -0.000 -2.783      : -2.783 -0.000 -2.783      : -2.783 -0.000 -2.783
X estimated : -2.676 +0.207 -2.637    : -2.364 +0.637 -2.246      : +2.951 +0.663 +3.053      : -1.738 +1.293 -1.514
X unfilterd : -17.312  +4.557  -2.641 : -4.687 -2.657 -2.224      : +1.513 -8.039 +2.899      : +5.889 -1.179 -1.396
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : -2.683 -0.000 -2.683    : -2.683 -0.000 -2.683      : -2.683 -0.000 -2.683      : -2.683 -0.000 -2.683
X estimated : -2.596 +0.157 -2.561    : -2.300 +0.612 -2.171      : +2.588 +1.053 +2.816      : -1.079 +1.683 -0.702
X unfilterd : -15.711  +4.166  -2.561 : -5.721 -2.061 -2.157      : +1.186 -8.120 +2.713      : +5.009 -4.117 -0.537
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : -2.583 -0.000 -2.583    : -2.583 -0.000 -2.583      : -2.583 -0.000 -2.583      : -2.583 -0.000 -2.583
X estimated : -2.477 +0.207 -2.408    : -2.293 +0.503 -2.157      : +2.688 +1.005 +2.962      : -1.656 +1.231 -1.314
X unfilterd : -15.579  +5.003  -2.411 : -7.129 -1.812 -2.156      : +1.352 -7.569 +2.819      : +5.240 -3.220 -1.160
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : -2.483 -0.000 -2.483    : -2.483 -0.000 -2.483      : -2.483 -0.000 -2.483      : -2.483 -0.000 -2.483
X estimated : -2.385 +0.216 -2.315    : -2.203 +0.513 -2.021      : +2.654 +1.092 +3.011      : -0.953 +1.660 -0.399
X unfilterd : -13.615  +5.285  -2.314 : -6.435 -2.216 -2.015      : +1.172 -8.897 +2.893      : +3.533 -5.672 -0.224
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : -2.383 -0.000 -2.383    : -2.383 -0.000 -2.383      : -2.383 -0.000 -2.383      : -2.383 -0.000 -2.383
X estimated : -2.326 +0.151 -2.267    : -2.130 +0.489 -1.937      : +2.392 +1.288 +2.903      : -0.581 +1.745 +0.112
X unfilterd : -12.351  +5.515  -2.263 : -6.695 -1.893 -1.933      : +2.762 -8.807 +2.765      : +2.414 -5.708 +0.242
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : -2.283 -0.000 -2.283    : -2.283 -0.000 -2.283      : -2.283 -0.000 -2.283      : -2.283 -0.000 -2.283
X estimated : -2.249 +0.091 -2.198    : -2.085 +0.414 -1.889      : +2.569 +1.208 +3.120      : -0.095 +1.863 +0.763
X unfilterd : -12.025  +6.530  -2.193 : -7.359 -2.165 -1.893      : +1.850 -8.645 +2.957      : -0.111 -6.792 +0.908
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : -2.183 +0.000 -2.183    : -2.183 +0.000 -2.183      : -2.183 +0.000 -2.183      : -2.183 +0.000 -2.183
X estimated : -2.121 +0.117 -2.075    : -1.969 +0.442 -1.736      : -2.422 -0.841 -2.850      : +0.774 +1.863 +1.747
X unfilterd : -12.080  +7.385  -2.072 : -7.640 -2.250 -1.745      : -0.491 +7.910 -3.041      : -3.353 -6.625 +1.880
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : -2.083 +0.000 -2.083    : -2.083 +0.000 -2.083      : -2.083 +0.000 -2.083      : -2.083 +0.000 -2.083
X estimated : -2.015 +0.141 -1.945    : -1.890 +0.411 -1.649      : +2.255 +1.407 +3.077      : +1.116 +1.815 +2.150
X unfilterd : -10.883  +8.108  -1.940 : -7.012 -2.864 -1.654      : +1.513 -6.916 +2.876      : -5.338 -6.772 +2.358
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : -1.983 +0.000 -1.983    : -1.983 +0.000 -1.983      : -1.983 +0.000 -1.983      : -1.983 +0.000 -1.983
X estimated : -1.938 +0.108 -1.865    : -1.834 +0.364 -1.598      : +1.613 +1.675 +2.700      : +1.525 +1.652 +2.633
X unfilterd : -11.229  +8.365  -1.864 : -6.931 -3.146 -1.604      : +2.316 -5.736 +2.496      : -6.396 -5.787 +2.805
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : -1.883 -0.000 -1.883    : -1.883 -0.000 -1.883      : -1.883 -0.000 -1.883      : -1.883 -0.000 -1.883
X estimated : -1.867 +0.088 -1.792    : -1.767 +0.310 -1.533      : -2.082 -1.208 -2.960      : +1.454 +1.690 +2.659
X unfilterd : -11.136  +7.322  -1.795 : -6.761 -2.898 -1.537      : +2.115 -6.911 +3.075      : -6.564 -4.848 +2.767
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : -1.783 -0.000 -1.783    : -1.783 -0.000 -1.783      : -1.783 -0.000 -1.783      : -1.783 -0.000 -1.783
X estimated : -1.748 +0.118 -1.667    : -1.699 +0.222 -1.521      : -1.919 -0.598 -2.401      : +0.611 +1.784 +2.028
X unfilterd : -8.945 +7.576 -1.665    : -5.781 -3.458 -1.518      : +0.016 +6.227 -2.652      : -3.766 -5.933 +2.197
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : -1.683 -0.000 -1.683    : -1.683 -0.000 -1.683      : -1.683 -0.000 -1.683      : -1.683 -0.000 -1.683
X estimated : -1.646 +0.102 -1.566    : -1.603 +0.203 -1.439      : -1.777 -0.450 -2.168      : +1.163 +1.715 +2.652
X unfilterd : -8.571 +6.948 -1.567    : -4.905 -3.123 -1.427      : +0.896 +5.084 -2.445      : -6.152 -5.864 +2.895
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : -1.583 -0.000 -1.583    : -1.583 -0.000 -1.583      : -1.583 -0.000 -1.583      : -1.583 -0.000 -1.583
X estimated : -1.551 +0.122 -1.444    : -1.534 +0.170 -1.376      : -1.662 -0.206 -1.845      : -1.590 -1.524 -3.102
X unfilterd : -9.047 +7.182 -1.450    : -5.567 -2.233 -1.366      : +1.146 +3.357 -2.169      : +7.845 +4.126 -2.842
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : -1.483 -0.000 -1.483    : -1.483 -0.000 -1.483      : -1.483 -0.000 -1.483      : -1.483 -0.000 -1.483
X estimated : -1.448 +0.102 -1.335    : -1.453 +0.104 -1.323      : -1.582 -0.381 -1.986      : -1.499 -1.485 -3.081
X unfilterd : -8.323 +6.988 -1.342    : -5.112 -1.819 -1.305      : +0.661 +2.193 -2.353      : +7.809 +4.706 -2.749
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : -1.383 -0.000 -1.383    : -1.383 -0.000 -1.383      : -1.383 -0.000 -1.383      : -1.383 -0.000 -1.383
X estimated : -1.348 +0.087 -1.253    : -1.352 +0.095 -1.244      : -1.439 -0.285 -1.778      : -1.458 -0.743 -2.330
X unfilterd : -7.249 +7.520 -1.256    : -4.836 -1.425 -1.223      : +1.060 +1.032 -2.178      : +7.323 +1.680 -1.931
----------------------------------    ----------------------      ----------------------      ----------------------
X simulated : -1.283 +0.000 -1.283    : -1.283 +0.000 -1.283      : -1.283 +0.000 -1.283      : -1.283 +0.000 -1.283
X estimated : -1.260 +0.051 -1.195    : -1.248 +0.139 -1.067      : -1.340 -0.269 -1.676      : -1.311 -0.004 -1.251
X unfilterd : -6.460 +7.882 -1.196    : -5.527 -1.074 -1.053      : +0.925 +1.687 -2.058      : +7.127 -2.524 -0.932
----------------------------------    ----------------------      ----------------------      ----------------------

@joansola
Copy link
Collaborator

joansola commented Sep 3, 2024

So here is what happens.

You are using motion steps of 10cm forward, 0.1rad left.

Then you are using perturbations, at each step, of 1m forwards and sideways, and up to 1rad turning. the noises are much larger than the motion steps.

Under these conditions, there is no way one can guess the orientation of the vehicle from its trajectory. the motion is just too erratic.

XY converge because of GNSS.

Theta is practically unobservable.

To make theta observable, you need to make the XY noise smaller than the motion step, which is 10cm. So I recommend u_sigma 0.1, 0.1 for the XY maximum.

Then for theta, you already trien 0.05 and 0.1. they should be about right, but in the upper limit.

I will accept this PR. You can try to lower u_sigma to not be larger than u_nominal and see if you can make theta observable. You may need long trajectories to allow X_unfiltered to diverge while X_filtered stays around X_nominal.

Thanks for the effort.

@Chris7462
Copy link
Author

Chris7462 commented Sep 3, 2024

Thank you! I forgot to check whether the number of motion steps make sense after multiplying the control by a factor of 10. I understand that perturbations should be much smaller compared to the motions.

I have conducted another simulation with 1,000 steps, and the setup was configured as requested. Based on this, I believe there is sufficient evidence to conclude that the filter is working properly. Really appreciate your insight and help!

u_nom    << 0.1, 0.0, 0.1;
u_sigmas << 0.1, 0.1, 0.05;
y_sigmas << 0.01, 0.01;

X STATE     :    X      Y    THETA
----------------------------------
X initial   : +0.000 +0.000 +0.000
----------------------------------
X simulated : +0.100 +0.000 +0.100
X estimated : +0.103 -0.003 +0.143
X unfilterd : +0.197 +0.057 +0.144
----------------------------------
.
// deleted
.
----------------------------------
X simulated : -0.531 -0.000 -0.531
X estimated : -0.528 +0.031 -0.429
X unfilterd : -1.674 +2.503 -1.781
----------------------------------

dx = K * z;

// Update
X = X.lplus(dx);
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I believe this should be X.lplus(-dx).

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please see my comment here: #308 (comment)

@joansola
Copy link
Collaborator

joansola commented Sep 4, 2024

This PR provides an example of the left IEKF method based on position measurements (GPS-like). The example was adapted from here with some corrections in the update step.

Yes, the last step is wrong

@Chris7462 Chris7462 requested a review from joansola September 11, 2024 11:33
@Chris7462
Copy link
Author

Chris7462 commented Sep 11, 2024

Update the PR based on the discussion above. The following results are for 1000 steps.

u_nom    << 0.1, 0.0, 0.1;
u_sigmas << 0.1, 0.1, 0.05;
y_sigmas << 0.01, 0.01;

X STATE     :    X      Y    THETA
----------------------------------
X initial   : +0.000 +0.000 +0.000
----------------------------------
X simulated : +0.100 +0.000 +0.100
X estimated : +0.091 -0.003 +0.065
X unfilterd : +0.022 -0.010 +0.065
----------------------------------
.
// deleted
.
----------------------------------
X simulated : -0.531 -0.000 -0.531
X estimated : -0.536 -0.001 -0.538
X unfilterd : +0.976 -0.442 -0.807
----------------------------------

@Chris7462 Chris7462 closed this by deleting the head repository Jan 17, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Documentation enhancement New feature or request
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants