An object detection model for digital user interfaces
docker run --gpus all -it -p 8888:8888 --name dgtlvsn tensorflow/tensorflow:latest/gpu
apt-get update && apt-get install git
apt-get install protobuf-compiler
apt-get install wget
python -m venv my-env
source my-env/bin/activate
python -m pip install --upgrade pip
pip install ipykernel
python -m ipykernel install --user --name=my-kernel
python -m pip install --upgrade jupyter
- Clone this repository.
- Open 1_Setup.ipynb to install packages, creates folders, and ensure the check is satisfied.
- Download sample dataset or place images in
/Tensorflow/workspace/images/train
and/Tensorflow/workspace/images/test
.
Training and evaluation were performed within a Docker container on a Windows machine (16gb RAM, RTX 3080)
Model: SSD Mobile Net 640x640
Sites | Images | Steps | AP | AR | CL | TL |
---|---|---|---|---|---|---|
5 | 10 | 2000 | 0.839 | 0.421 | 0.0995 | 0.4056 |
5 | 10 | 5000 | 0.872 | 0.429 | 0.1002 | 0.2400 |
5 | 50 | 2000 | 0.871 | 0.489 | 0.0260 | 0.1722 |
5 | 50 | 5000 | 0.896 | 0.498 | 0.0292 | 0.1540 |
5 | 50 | 10000 | 0.966 | 0.539 | 0.0213 | 0.1149 |
5 | 100 | 2000 | 0.909 | 0.452 | 0.0639 | 0.2225 |
5 | 100 | 5000 | 0.927 | 0.464 | 0.0184 | 0.1463 |
5 | 100 | 10000 | 0.879 | 0.439 | 0.0267 | 0.1220 |