Skip to content

Commit

Permalink
Merge pull request #2040 from AdeelH/chip
Browse files Browse the repository at this point in the history
Reconcile chip-sampling functionality in `RVPipelines` with `GeoDatasets` (#1496)
  • Loading branch information
AdeelH authored Feb 5, 2024
2 parents 2ed63e3 + 0095fa6 commit 6ad3bdd
Show file tree
Hide file tree
Showing 61 changed files with 1,322 additions and 1,044 deletions.
2 changes: 1 addition & 1 deletion docs/framework/pipelines.rst
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@ In the {{ tiny_spacenet }} example, the :class:`.SemanticSegmentationConfig` is

.. literalinclude:: /../rastervision_pytorch_backend/rastervision/pytorch_backend/examples/tiny_spacenet.py
:language: python
:lines: 48-53
:lines: 48-52
:dedent:

.. seealso:: The :class:`.ChipClassificationConfig`, :class:`.SemanticSegmentationConfig`, and :class:`.ObjectDetectionConfig` API docs have more information on configuring pipelines.
Expand Down
18 changes: 10 additions & 8 deletions integration_tests/chip_classification/config.py
Original file line number Diff line number Diff line change
@@ -1,15 +1,16 @@
from os.path import join, dirname, basename

from rastervision.core.rv_pipeline import ChipClassificationConfig
from rastervision.core.rv_pipeline import (ChipClassificationConfig,
ChipOptions, WindowSamplingConfig,
WindowSamplingMethod)
from rastervision.core.data import (
ClassConfig, ChipClassificationLabelSourceConfig,
GeoJSONVectorSourceConfig, RasterioSourceConfig, StatsTransformerConfig,
SceneConfig, DatasetConfig)
from rastervision.pytorch_backend import PyTorchChipClassificationConfig
from rastervision.pytorch_learner import (
Backbone, SolverConfig, ClassificationModelConfig,
ClassificationImageDataConfig, ClassificationGeoDataConfig,
GeoDataWindowConfig, GeoDataWindowMethod)
ClassificationImageDataConfig, ClassificationGeoDataConfig)


def get_config(runner, root_uri, data_uri=None, full_train=False,
Expand Down Expand Up @@ -56,13 +57,14 @@ def make_scene(img_path, label_path):
chip_sz = 200
img_sz = chip_sz

if nochip:
window_opts = GeoDataWindowConfig(
method=GeoDataWindowMethod.sliding, stride=chip_sz, size=chip_sz)
chip_options = ChipOptions(
sampling=WindowSamplingConfig(
method=WindowSamplingMethod.sliding, stride=chip_sz, size=chip_sz))

if nochip:
data = ClassificationGeoDataConfig(
scene_dataset=scene_dataset,
window_opts=window_opts,
sampling=chip_options.sampling,
img_sz=img_sz,
augmentors=[])
else:
Expand Down Expand Up @@ -99,7 +101,7 @@ def make_scene(img_path, label_path):
root_uri=root_uri,
dataset=scene_dataset,
backend=backend,
train_chip_sz=chip_sz,
chip_options=chip_options,
predict_chip_sz=chip_sz)

return config
26 changes: 12 additions & 14 deletions integration_tests/object_detection/config.py
Original file line number Diff line number Diff line change
@@ -1,16 +1,16 @@
from os.path import join, dirname

from rastervision.core.rv_pipeline import (ObjectDetectionConfig,
ObjectDetectionChipOptions,
ObjectDetectionPredictOptions)
from rastervision.core.rv_pipeline import (
ObjectDetectionConfig, ObjectDetectionChipOptions,
ObjectDetectionPredictOptions, ObjectDetectionWindowSamplingConfig,
WindowSamplingMethod)
from rastervision.core.data import (
ClassConfig, ObjectDetectionLabelSourceConfig, GeoJSONVectorSourceConfig,
RasterioSourceConfig, SceneConfig, DatasetConfig)
from rastervision.pytorch_backend import PyTorchObjectDetectionConfig
from rastervision.pytorch_learner import (
Backbone, SolverConfig, ObjectDetectionModelConfig,
ObjectDetectionImageDataConfig, ObjectDetectionGeoDataConfig,
ObjectDetectionGeoDataWindowConfig, GeoDataWindowMethod)
ObjectDetectionImageDataConfig, ObjectDetectionGeoDataConfig)


def get_config(runner, root_uri, data_uri=None, full_train=False,
Expand Down Expand Up @@ -48,19 +48,18 @@ def make_scene(scene_id, img_path, label_path):
train_scenes=scenes,
validation_scenes=scenes)

chip_options = ObjectDetectionChipOptions(neg_ratio=1.0, ioa_thresh=1.0)

if nochip:
window_opts = ObjectDetectionGeoDataWindowConfig(
method=GeoDataWindowMethod.sliding,
chip_options = ObjectDetectionChipOptions(
sampling=ObjectDetectionWindowSamplingConfig(
method=WindowSamplingMethod.sliding,
stride=chip_sz,
size=chip_sz,
neg_ratio=chip_options.neg_ratio,
ioa_thresh=chip_options.ioa_thresh)
neg_ratio=1.0,
ioa_thresh=1.0))

if nochip:
data = ObjectDetectionGeoDataConfig(
scene_dataset=scene_dataset,
window_opts=window_opts,
sampling=chip_options.sampling,
img_sz=img_sz,
augmentors=[])
else:
Expand Down Expand Up @@ -100,7 +99,6 @@ def make_scene(scene_id, img_path, label_path):
root_uri=root_uri,
dataset=scene_dataset,
backend=backend,
train_chip_sz=chip_sz,
predict_chip_sz=chip_sz,
chip_options=chip_options,
predict_options=predict_options)
23 changes: 9 additions & 14 deletions integration_tests/semantic_segmentation/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,14 +5,13 @@
SemanticSegmentationLabelStoreConfig, RasterioSourceConfig, SceneConfig,
PolygonVectorOutputConfig, DatasetConfig, BuildingVectorOutputConfig,
RGBClassTransformerConfig)
from rastervision.core.rv_pipeline import (SemanticSegmentationChipOptions,
SemanticSegmentationWindowMethod,
SemanticSegmentationConfig)
from rastervision.core.rv_pipeline import (
SemanticSegmentationChipOptions, SemanticSegmentationConfig,
WindowSamplingConfig, WindowSamplingMethod)
from rastervision.pytorch_backend import PyTorchSemanticSegmentationConfig
from rastervision.pytorch_learner import (
Backbone, SolverConfig, SemanticSegmentationModelConfig,
SemanticSegmentationImageDataConfig, SemanticSegmentationGeoDataConfig,
GeoDataWindowConfig, GeoDataWindowMethod)
SemanticSegmentationImageDataConfig, SemanticSegmentationGeoDataConfig)


def get_config(runner, root_uri, data_uri=None, full_train=False,
Expand Down Expand Up @@ -62,17 +61,14 @@ def make_scene(id, img_path, label_path):
validation_scenes=scenes)

chip_options = SemanticSegmentationChipOptions(
window_method=SemanticSegmentationWindowMethod.sliding, stride=chip_sz)
sampling=WindowSamplingConfig(
method=WindowSamplingMethod.sliding, stride=chip_sz, size=chip_sz))

if nochip:
window_opts = GeoDataWindowConfig(
method=GeoDataWindowMethod.sliding,
stride=chip_options.stride,
size=chip_sz)

data = SemanticSegmentationGeoDataConfig(
scene_dataset=scene_dataset,
window_opts=window_opts,
sampling=chip_options.sampling,
img_sz=img_sz,
augmentors=[])
else:
Expand Down Expand Up @@ -110,6 +106,5 @@ def make_scene(id, img_path, label_path):
root_uri=root_uri,
dataset=scene_dataset,
backend=backend,
train_chip_sz=chip_sz,
predict_chip_sz=chip_sz,
chip_options=chip_options)
chip_options=chip_options,
predict_chip_sz=chip_sz)
2 changes: 1 addition & 1 deletion rastervision_core/rastervision/core/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@


def register_plugin(registry):
registry.set_plugin_version('rastervision.core', 10)
registry.set_plugin_version('rastervision.core', 11)
from rastervision.core.cli import predict, predict_scene
registry.add_plugin_command(predict)
registry.add_plugin_command(predict_scene)
Expand Down
12 changes: 11 additions & 1 deletion rastervision_core/rastervision/core/backend/backend.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,8 @@

if TYPE_CHECKING:
from rastervision.core.data_sample import DataSample
from rastervision.core.data import Labels, Scene
from rastervision.core.data import DatasetConfig, Labels, Scene
from rastervision.core.rv_pipeline import ChipOptions


class SampleWriter(AbstractContextManager):
Expand Down Expand Up @@ -57,3 +58,12 @@ def predict_scene(self, scene: 'Scene', chip_sz: int,
Return:
Labels object containing predictions
"""

@abstractmethod
def chip_dataset(self, dataset: 'DatasetConfig',
chip_options: 'ChipOptions') -> None:
"""Create and write chips for scenes in a :class:`.DatasetConfig`.
Args:
scenes: Scenes to chip.
"""
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ class ChipClassificationLabelSourceConfig(LabelSourceConfig):
None,
description=
('Size of a cell to use in pixels. If None, and this Config is part '
'of an RVPipeline, this field will be set from RVPipeline.train_chip_sz.'
'of an RVPipeline, this field will be set from RVPipeline.chip_options.'
))
lazy: bool = Field(
False,
Expand Down Expand Up @@ -107,6 +107,6 @@ def build(self, class_config, crs_transformer, bbox=None,
def update(self, pipeline=None, scene=None):
super().update(pipeline, scene)
if self.cell_sz is None and pipeline is not None:
self.cell_sz = pipeline.train_chip_sz
self.cell_sz = pipeline.chip_options.get_chip_sz(scene.id)
if self.vector_source is not None:
self.vector_source.update(pipeline, scene)
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
from typing import TYPE_CHECKING, Any, List, Optional
from typing import TYPE_CHECKING, Any, Optional

import numpy as np

Expand Down Expand Up @@ -36,28 +36,6 @@ def __init__(self,
if bbox is not None:
self.set_bbox(bbox)

def enough_target_pixels(self, window: Box, target_count_threshold: int,
target_classes: List[int]) -> bool:
"""Check if window contains enough pixels of the given target classes.
Args:
window: The larger window from-which the sub-window will
be clipped.
target_count_threshold: Minimum number of target pixels.
target_classes: The classes of interest. The given
window is examined to make sure that it contains a
sufficient number of target pixels.
Returns:
True (the window does contain interesting pixels) or False.
"""
label_arr = self.get_label_arr(window)

target_count = 0
for class_id in target_classes:
target_count += (label_arr == class_id).sum()

return target_count >= target_count_threshold

def get_labels(self,
window: Optional[Box] = None) -> SemanticSegmentationLabels:
"""Get labels for a window.
Expand Down
1 change: 1 addition & 0 deletions rastervision_core/rastervision/core/data/utils/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,3 +6,4 @@
from rastervision.core.data.utils.raster import *
from rastervision.core.data.utils.rasterio import *
from rastervision.core.data.utils.vectorization import *
from rastervision.core.data.utils.aoi_sampler import *
19 changes: 9 additions & 10 deletions rastervision_core/rastervision/core/data_sample.py
Original file line number Diff line number Diff line change
@@ -1,17 +1,16 @@
from pydantic import BaseModel
from typing import Any, Literal, Optional
from dataclasses import dataclass

from numpy import ndarray

from rastervision.core.box import Box
from rastervision.core.data import Labels


class DataSample(BaseModel):
@dataclass
class DataSample:
"""A chip and labels along with metadata."""
chip: ndarray
window: Box
labels: Labels
scene_id: str = 'default'
is_train: bool = True

class Config:
arbitrary_types_allowed = True
label: Optional[Any] = None
split: Optional[Literal['train', 'valid', 'test']] = None
scene_id: Optional[str] = None
window: Optional[Box] = None
7 changes: 5 additions & 2 deletions rastervision_core/rastervision/core/rv_pipeline/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
TRAIN = 'train'
VALIDATION = 'validation'

from rastervision.core.rv_pipeline.chip_options import *
from rastervision.core.rv_pipeline.rv_pipeline import *
from rastervision.core.rv_pipeline.rv_pipeline_config import *
from rastervision.core.rv_pipeline.chip_classification import *
Expand All @@ -22,10 +23,12 @@
SemanticSegmentationConfig.__name__,
SemanticSegmentationChipOptions.__name__,
SemanticSegmentationPredictOptions.__name__,
SemanticSegmentationWindowMethod.__name__,
ObjectDetection.__name__,
ObjectDetectionConfig.__name__,
ObjectDetectionChipOptions.__name__,
ObjectDetectionWindowSamplingConfig.__name__,
ObjectDetectionChipOptions.__name__,
ObjectDetectionPredictOptions.__name__,
ChipOptions.__name__,
WindowSamplingConfig.__name__,
WindowSamplingMethod.__name__,
]
Original file line number Diff line number Diff line change
@@ -1,42 +1,5 @@
from typing import List
import logging

from rastervision.core.rv_pipeline.rv_pipeline import RVPipeline
from rastervision.core.rv_pipeline.utils import nodata_below_threshold
from rastervision.core.box import Box
from rastervision.core.data import Scene

log = logging.getLogger(__name__)


def get_train_windows(scene: Scene,
chip_size: int,
chip_nodata_threshold: float = 1.) -> List[Box]:
train_windows = []
extent = scene.raster_source.extent
stride = chip_size
windows = extent.get_windows(chip_size, stride)

total_windows = len(windows)
if scene.aoi_polygons_bbox_coords:
windows = Box.filter_by_aoi(windows, scene.aoi_polygons_bbox_coords)
log.info(f'AOI filtering: {len(windows)}/{total_windows} '
'chips accepted')
for window in windows:
chip = scene.raster_source.get_chip(window)
if nodata_below_threshold(chip, chip_nodata_threshold, nodata_val=0):
train_windows.append(window)
log.info('NODATA filtering: '
f'{len(train_windows)}/{len(windows)} chips accepted')
return train_windows


class ChipClassification(RVPipeline):
def get_train_windows(self, scene: Scene) -> List[Box]:
return get_train_windows(
scene,
self.config.train_chip_sz,
chip_nodata_threshold=self.config.chip_nodata_threshold)

def get_train_labels(self, window: Box, scene: Scene):
return scene.label_source.get_labels(window=window)
pass
Loading

0 comments on commit 6ad3bdd

Please sign in to comment.