-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
restructure project and simplify main entry point
- Loading branch information
Showing
5 changed files
with
67 additions
and
61 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
from typing import Any | ||
|
||
import pandas as pd | ||
import sqlalchemy | ||
from dune_client.client import DuneClient | ||
from dune_client.models import ExecutionResult | ||
from dune_client.query import QueryBase | ||
from pandas import DataFrame | ||
from sqlalchemy import create_engine | ||
|
||
from src.config import DuneToLocalJob, Env | ||
from src.dune_to_local.mappings import DUNE_TO_PG | ||
from src.logger import log | ||
|
||
DataTypes = dict[str, Any] | ||
|
||
|
||
def reformat_varbinary_columns( | ||
df: DataFrame, varbinary_columns: list[str] | ||
) -> DataFrame: | ||
for col in varbinary_columns: | ||
df[col] = df[col].apply(lambda x: bytes.fromhex(x[2:]) if pd.notnull(x) else x) | ||
return df | ||
|
||
|
||
def dune_result_to_df(result: ExecutionResult) -> tuple[DataFrame, dict[str, type]]: | ||
metadata = result.metadata | ||
dtypes, varbinary_columns = {}, [] | ||
for name, d_type in zip(metadata.column_names, metadata.column_types): | ||
dtypes[name] = DUNE_TO_PG[d_type] | ||
if d_type == "varbinary": | ||
varbinary_columns.append(name) | ||
|
||
df = pd.DataFrame(result.rows) | ||
# escape bytes | ||
df = reformat_varbinary_columns(df, varbinary_columns) | ||
return df, dtypes | ||
|
||
|
||
def fetch_dune_data(dune_key: str, job: DuneToLocalJob) -> tuple[DataFrame, DataTypes]: | ||
result = ( | ||
DuneClient(dune_key, performance=job.query_engine) | ||
.run_query(query=QueryBase(job.query_id), ping_frequency=job.poll_frequency) | ||
.result | ||
) | ||
if result is None: | ||
raise ValueError("Query execution failed!") | ||
return dune_result_to_df(result) | ||
|
||
|
||
def save_to_postgres( | ||
engine: sqlalchemy.engine.Engine, table_name: str, df: DataFrame, dtypes: DataTypes | ||
) -> None: | ||
df.to_sql(table_name, engine, if_exists="replace", index=False, dtype=dtypes) | ||
log.info("Data saved to %s successfully!", table_name) | ||
|
||
|
||
def dune_to_postgres(env: Env, job: DuneToLocalJob) -> None: | ||
df, types = fetch_dune_data(env.dune_api_key, job) | ||
if df is not None: | ||
engine = create_engine(env.db_url) | ||
save_to_postgres(engine, job.table_name, df, types) | ||
else: | ||
log.warning("No Query results found! Skipping write") |
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters