Skip to content

Label And Segment are Based on Results of AttentionGAN Using Region Growing Segmentation Algorithm

Notifications You must be signed in to change notification settings

chenwwayne/Auto-Defect-Label-And-Segment

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

基于AttentionGAN和区域生长分割算法的缺陷标注与分割

Introduction

This repo based on AttentionGAN result. Using AttentionGAN to generate saliency image and target image (In this repo., as defect-free image). Using defect image, saliency image and defect-free image to realisze automatic defect labeling and segmentation of defects.

Requirements

  • cv2
  • numpy
  • skimage

AttentionGAN Result

  • input

  • output

This repo. result

  • input image

  • Defect label result(test_label.py)

  • Defect segmention result(test_seg.py)

Detail of algorithm

函数segImage:

输入:缺陷原图input、分割后的二值Mask

输出:画出标注框的图

流程:

  • 对二值Mask求导,由于输入是二维矩阵,所以得到二个方向的导数矩阵cx, cy
  • 两个导数矩阵取绝对值相加,其中导数不为0的像素即为二值Mask的边界像素,得到类型为bool的矩阵
  • 以标注框为红色为例,取出input的红色通道, 与bool型矩阵相比取最大。由于bool型矩阵不是False 就是True,True即为最大值255,则对应的边界像素取最大即为红色框

形态学重建imreconstruct

About

Label And Segment are Based on Results of AttentionGAN Using Region Growing Segmentation Algorithm

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages