Skip to content

Data, scripts and derivatives for the CNeuroMod-THINGS dataset

License

Notifications You must be signed in to change notification settings

courtois-neuromod/cneuromod-things

Repository files navigation

cneuromod-things

720 CC0 THINGS images

Data, scripts and derivatives for the CNeuroMod-THINGS dataset, for which N=4 CNeuroMod participants underwent 33-36 fMRI sessions of a continuous recognition task based on images from the THINGS dataset.

Files related to the main task are found under THINGS:

  • THINGS/fmriprep includes source and preprocessed bold data, eye-tracking data, *events.tsv files with trialwise metrics, stimuli and annotations.
  • THINGS/behaviour includes analyses of the subjects' performance on the continuous recognition task and of fixation compliance (assessed with eye-tracking).
  • THINGS/glmsingle includes fMRI analyses and derivatives, including trialwise and imagewise beta scores estimated with GLMsingle, voxelwise noise ceilings, and proof-of-principle analyses to showcase the quality of the data.

In addition, this repository includes data, scripts and derivatives from two complementary vision localizer tasks, fLoc and retinotopy (population receptive field), used to derive subject-specific ROIs. anatomical data that include flat maps to visualize voxelwise statistics on a flattened cortical surface are also included.

datapaper includes jupyter notebooks with code to re-create figures from the upcoming data paper using data and result files saved in the current repository.

TODO: add link to datapaper manuscript.

Installation

All CNeuroMod data are made available as a DataLad collection on github. The released datasets are described here. Datasets can be explored without downloading the data, and make it easy to download only the subset of data needed for a project.

1. Requesting access

You can apply for access to the CNeuroMod datasets here.

You will receive login credentials to access the NeuroMod git and the NeuroMod Amazon S3 fileserver so you can download the data. See here for additional information on accessing the data.

2. Installing DataLad

Install a recent version of the DataLad software, a tool for versioning large data structures in a git repository available for Linux, OSX and Windows.

If not already present, we also recommend creating an SSH key on the machine where the dataset will be installed and adding it to Github. See the official github instructions on how to create and add a key to your account.

3. Installing the cneuromod-things repository

Install the current repository from GitHub with DataLad.

datalad clone [email protected]:courtois-neuromod/cneuromod-things.git

4. Downloading the dataset(s)

Specify your CNeuroMod login credentials as environment variables in your bash console to download data from the S3 file server.

Use the access_key and secret_key you received when granted access to the dataset.

  export AWS_ACCESS_KEY_ID=<s3_access_key>  AWS_SECRET_ACCESS_KEY=<s3_secret_key>

You can download specific data subsets and files by specifying their path using the datalad get command. Note that, if you just cloned the cneuromod-things repository, submodules will appear empty. You will need to use the datalad get command twice: once to download a submodule’s symbolic links and files stored directly on github, and then a second time to download files from the remote S3 store.

For example, you can download sub-01's files from the THINGS/behaviour submodule with:

cd cneuromod-things/THINGS/behaviour
datalad get *
datalad get sub-01/beh/*

Alternatively (not recommended!), you can pull the entire content of this dataset and of its nested submodules from the S3 file server with this command line.

cd cneuromod-things
datalad get -r *

Project Organization

├── LICENSE
├── README.md          <- The top-level README for this repository.
├── anatomical         <- Anatomical datasets and scripts
│    ├── README.md          <- Anatomical dataset overview, links to flat map instructions
│    ├── smriprep           <- smriprep anatomical output
│    │      ├── sub-0*         
│    │      │    └── anat   
│    │      │         └── sub-0*_label-GM_probseg.nii.gz   <- fmriprep grey matter mask  
│    │      └── sourcedata         
│    │            └── freesurfer       <- freesurfer output
│    │                   ├── doc         
│    │                   │    └── flatmaps.md   <- Instructions to generate flat maps in pycortex
│    │                   └── sub-0*    
│    │                        └── surf   
│    │                              ├── {lh, rh}.full.patch.3d        <- patches to create flat maps       
│    │                              ├── {lh, rh}.full.flat.patch.3d      
│    │                              └── {lh, rh}.full.flat.patch.3d.out       
│    └── pycortex
│          ├── README.md
│          ├── doc
│          │    └── using_flatmaps.md      <- Instructions to generate flat maps in pycortex
│          └── db     <- database of pycortex files with annotated surfaces that delineate visual ROIs
│               └── sub-0*
│                     ├── anatomicals
│                     ├── surfaces
│                     ├── transforms    
│                     └── overlays.svg  <- annotated with manually traced ROIs for sub-01, 02 and 03
│
├── fLoc                  <- fLoc visual localizer dataset and scripts
│    ├── README.md        <- Overview of fLoc dataset and scripts
│    ├── fmriprep         <- fmriprep output
│    │    ├── sub-0*
│    │    │     └── ses-*
│    │    │          └── func    <- preprocessed fMRI files in T1w space
│    │    │               ├── sub-0*_ses-0*_task-fLoc_run-*_space-T1w_desc-preproc_part-mag_bold.nii.gz
│    │    │               └── sub-0*_ses-0*_task-fLoc_run-*_desc-confounds_part-mag_timeseries.tsv  <- noise confounds
│    │    │  
│    │    └── sourcedata     <- raw files
│    │         └── floc      <- bidsified raw fMRI data & output   
│    │               ├── sub-0*
│    │               │     └── ses-*
│    │               │          └── func
│    │               │               └── sub-0*_ses-00*_task-fLoc_run-0*_events.tsv  <- events.tsv files
│    │               │
│    │               └── stimuli     <- stimulus images per category
│    │
│    └── rois               <- fLoc derivative datasets and scripts
│            ├── code       <- scripts to run glm and generate ROIs
│            │     ├── README.md    
│            │     ├── requirements.txt          
│            │     ├── fLoc_makedesign.py
│            │     ├── fLoc_firstLevel_nilearn.py  
│            │     ├── fLoc_split_CVSparcels_perROI.py  
│            │     ├── fLoc_reconcile_parcelMasks.py  
│            │     └── fLoc_reconcile_ROImasks.py
│            │
│            ├── standard_masks
│            │     ├── kanwisher_parcels
│            │     │    ├── cvs    <- downloaded and unzipped cvs_*_parcels.zip files from https://web.mit.edu/bcs/nklab/GSS.shtml#download
│            │     │    │    ├── cvs_body_parcels
│            │     │    │    ├── cvs_face_parcels
│            │     │    │    ├── cvs_object_parcels
│            │     │    │    ├── cvs_scene_parcels
│            │     │    │    └── readme.txt            
│            │     │    └── mni            
│            │     │         └── parcel-kanwisher_space-MNI152T1_res-2mm_contrast-{body, face, object, scene}_pseg.nii.gz
│            │     └── standard_rois  <- unilateral and bilateral ROI masks in CVS and MNI space
│            │          ├── parcel-kanwisher_space-CVSavg35_contrast-face_roi-{FFA, OFA, pSTS}_desc-{L, R, bilat}_mask.nii.gz
│            │          ├── parcel-kanwisher_space-MNI152T1_contrast-face_roi-{FFA, OFA, pSTS}_desc-{L, R, bilat}_pseg.nii.gz
│            │          ├── parcel-kanwisher_space-CVSavg35_contrast-scene_roi-{PPA, OPA, MPA}_desc-{L, R, bilat}_mask.nii.gz
│            │          ├── parcel-kanwisher_space-MNI152T1_contrast-scene_roi-{PPA, OPA, MPA}_desc-{L, R, bilat}_pseg.nii.gz    
│            │          ├── parcel-kanwisher_space-CVSavg35_contrast-body_roi-EBA_desc-{L, R, bilat}_mask.nii.gz
│            │          └── parcel-kanwisher_space-MNI152T1_contrast-body_roi-EBA_desc-{L, R, bilat}_pseg.nii.gz
│            │
│            └── sub-0*
│                  ├── glm               <- first-level GLM contrast on fLoc BOLD data
│                  │    ├── sub-*_task-floc_model-GLM_design.h5
│                  │    ├── sub-*_task-floc_space-T1w_label-brain_desc-unionNonNaN_mask.nii.gz
│                  │    ├── sub-*_task-floc_space-T1w_label-brain_desc-unionNaN_mask.nii.gz
│                  │    ├── sub-*_task-floc_space-T1w_model-GLM_stat-{betas, tscores}_contrast-*_desc-smooth_statmap.nii.gz    
│                  │    └── sub-*_task-floc_space-T1w_model-GLM_stat-{betas, tscores}_contrast-*_desc-unsmooth_statmap.nii.gz
│                  └── rois
│                       ├── from_atlas       <- Kanwisher parcels and ROI masks warped to subject space
│                       │     ├── sub-*_parcel-kanwisher_space-T1w_res-anat_contrast-{body, face, object, scene}_pseg.nii.gz    
│                       │     ├── sub-*_parcel-kanwisher_space-T1w_res-anat_contrast-face_roi-{FFA, OFA, pSTS}_desc-{L, R, bilat}_pseg.nii.gz   
│                       │     ├── sub-*_parcel-kanwisher_space-T1w_res-anat_contrast-scene_roi-{PPA, OPA, MPA}_desc-{L, R, bilat}_pseg.nii.gz
│                       │     ├── sub-*_parcel-kanwisher_space-T1w_res-anat_contrast-body_roi-EBA_desc-{L, R, bilat}_pseg.nii.gz
│                       │     ├── sub-*_parcel-kanwisher_space-T1w_res-func_contrast-{body, face, object, scene}_mask.nii.gz    
│                       │     ├── sub-*_parcel-kanwisher_space-T1w_res-func_contrast-face_roi-{FFA, OFA, pSTS}_desc-{L, R, bilat}_mask.nii.gz   
│                       │     ├── sub-*_parcel-kanwisher_space-T1w_res-func_contrast-scene_roi-{PPA, OPA, MPA}_desc-{L, R, bilat}_mask.nii.gz
│                       │     └── sub-*_parcel-kanwisher_space-T1w_res-func_contrast-body_roi-EBA_desc-{L, R, bilat}_mask.nii.gz
│                       └── task-derived     <- parcels and ROI masks derived from the fLoc task
│                             ├── sub-*_task-floc_space-T1w_stat-tscores_contrast-*_cutoff-*_desc-smooth_mask.nii.gz    
│                             ├── sub-*_task-floc_space-T1w_stat-tscores_contrast-*_cutoff-*_desc-unsmooth_mask.nii.gz
│                             ├── sub-*_task-floc_space-T1w_stat-tscores_contrast-*_roi-*_cutoff-*_nvox-*_fwhm-*_ratio-*_desc-smooth_mask.nii.gz
│                             └── sub-*_task-floc_space-T1w_stat-tscores_contrast-*_roi-*_cutoff-*_nvox-*_fwhm-*_ratio-*_desc-unsmooth_mask.nii.gz
│
├── retinotopy              <- retinotopy (pRF) visual localizer datasets and scripts
│    ├── README.md          <- Overview of retinotopy dataset and scripts
│    ├── fmriprep           <- retinotopy fmriprep output
│    │    ├── sub-0*
│    │    │     └── ses-*
│    │    │          └── func    <- preprocessed fMRI files in T1w space
│    │    │               ├── sub-0*_ses-0*_task-{bars, rings, wedges}_space-T1w_desc-preproc_part-mag_bold.nii.gz
│    │    │               └── sub-0*_ses-0*_task-{bars, rings, wedges}_desc-confounds_timeseries.tsv  <- noise confounds
│    │    │  
│    │    └── sourcedata         <- raw files
│    │         └── retinotopy    <- bidsified raw fMRI data & output   
│    │               ├── sub-0*
│    │               │     └── ses-*
│    │               │          └── func
│    │               │               └── sub-0*_ses-*_task-{bars, rings, wedges}_events.tsv  <- events.tsv files
│    │               └── stimuli
│    │                     ├── {grid, images, scenes}.npz
│    │                     └── apertures_{bars, ring, wedge_newtr}.npz
│    │
│    └── prf                  <- population receptive fiels scripts and derivatives (e.g., visual ROIs)
│         ├── code            <- scripts to run glm single and process output
│         │     ├── README.md    
│         │     ├── requirements.txt          
│         │     ├── analyzePRF   <- analyzePRF repo submodule (a3ac908)  
│         │     ├── retino_make_apertureMasks.py
│         │     ├── retino_prepare_BOLD.py
│         │     ├── retino_run_analyzePRF.m
│         │     ├── retino_reassamble_voxels.py
│         │     └── retino_resample_npythy.py
│         │
│         ├── apertures       <- aperture masks that delineate task field of view
│         │     ├── task-retinotopy_condition-bars_desc-perTR_apertures.mat
│         │     ├── task-retinotopy_condition-rings_desc-perTR_apertures.mat
│         │     └── task-retinotopy_condition-wedges_desc-perTR_apertures.mat
│         │
│         └── sub-0*
│               ├── prf       <- population receptive fields input and output files
│               │    ├── input
│               │    │     ├── sub-0*_task-retinotopy_space-T1w_label-brain_desc-unionNaN_mask.nii    
│               │    │     ├── sub-0*_task-retinotopy_space-T1w_label-brain_desc-unionNonNaN_mask.nii    
│               │    │     └── chunks    
│               │    │            ├── sub-0*_task-retinotopy_condition-bars_space-T1w_desc-chunk{chunk_num}_bold.mat
│               │    │            ├── sub-0*_task-retinotopy_condition-rings_space-T1w_desc-chunk{chunk_num}_bold.mat    
│               │    │            └── sub-0*_task-retinotopy_condition-wedges_space-T1w_desc-chunk{chunk_num}_bold.mat
│               │    └── output
│               │          ├── sub-0*_task-retinotopy_space-T1w_model-analyzepRF_label-brain_stat-{stat}_statmap.nii.gz
│               │          ├── sub-0*_task-retinotopy_space-T1w_model-analyzePRF_label-brain_stat-{stat}_desc-npythy_statmap.nii.gz
│               │          └── chunks    
│               │                 ├── sub-*_task-retinotopy_space-T1w_model-analyzePRF_stat-ang_desc-chunk{chunk_num}_statseries.mat
│               │                 ├── sub-*_task-retinotopy_space-T1w_model-analyzePRF_stat-ecc_desc-chunk{chunk_num}_statseries.mat   
│               │                 ├── sub-0*_task-retinotopy_space-T1w_model-analyzePRF_stat-rfsize_desc-chunk{chunk_num}_statseries.mat
│               │                 └── sub-0*_task-retinotopy_space-T1w_model-analyzePRF_stat-R2_desc-chunk{chunk_num}_statseries.mat
│               ├── npythy       <- NeuroPythy toolbox input and output files
│               │    ├── input
│               │    │     ├── lh.s*_prf_{ang, ecc, x, y, R2, rfsize}.mgz      
│               │    │     └── rh.s*_prf_{ang, ecc, x, y, R2, rfsize}.mgz
│               │    └── output
│               │          ├── inferred_{angle, eccen, sigma, varea}.mgz
│               │          ├── {lh, rh}.inferred_{angle, eccen, sigma, varea}.mgz
│               │          ├── {lh, rh}.retinotopy.sphere.reg
│               │          ├── inferred_{angle, eccen, sigma, varea}_fsorient.nii.gz
│               │          ├── sub-*_task-retinotopy_space-T1w_res-anat_model-npythy_atlas-varea_dseg.nii.gz   
│               │          ├── sub-*_task-retinotopy_space-T1w_res-anat_model-npythy_stat-{angle, eccen, sigma}_statmap.nii.gz           
│               │          ├── sub-*_task-retinotopy_space-T1w_res-func_model-npythy_atlas-varea_dseg.nii.gz    
│               │          └── sub-*_task-retinotopy_space-T1w_res-func_model-npythy_stat-{angle, eccen, sigma}_statmap.nii.gz
│               └── rois       <- visual ROI masks    
│                    ├── sub-*_task-retinotopy_space-T1w_res-anat_model-npythy_label-{roi}_mask.nii.gz
│                    ├── sub-*_task-retinotopy_space-T1w_res-func_model-npythy_label-{roi}_desc-nn_mask.nii.gz
│                    └── sub-*_task-retinotopy_space-T1w_res-func_model-npythy_label-{roi}_desc-linear_mask.nii.gz
│
├── THINGS                    <- THINGS datasets, scripts and derivatives
│    ├── README.md            <- Overview of THINGS datasets and scripts
│    ├── fmriprep      <- fmriprep output
│    │    ├── sub-0*
│    │    │     └── ses-*
│    │    │          └── func    <- preprocessed fMRI files in MNI and T1w space
│    │    │               ├── sub-0*_ses-*_task-things_run-*_part-mag_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz
│    │    │               ├── sub-0*_ses-*_task-things_run-*_part-mag_space-MNI152NLin2009cAsym_desc-brain_mask.nii.gz
│    │    │               ├── sub-0*_ses-*_task-things_run-*_part-mag_space-T1w_desc-preproc_bold.nii.gz
│    │    │               ├── sub-0*_ses-*_task-things_run-*_part-mag_space-T1w_desc-brain_mask.nii.gz    
│    │    │               └── sub-0*_ses-*_task-things_run-*_part-mag_desc-confounds_timeseries.tsv    <- noise confounds
│    │    │  
│    │    └── sourcedata      <- raw files
│    │         └── things     <- bidsified raw fMRI data & output   
│    │               ├── sub-0*
│    │               │     └── ses-*
│    │               │          └── func
│    │               │               ├── sub-0*_ses-*_task-things_run-*_eyetrack.tsv.gz  <- eye-tracking files
│    │               │               └── sub-0*_ses-*_task-things_run-*_events.tsv  <- events.tsv files
│    │               ├── stimuli
│    │               │     ├── README.md   <- instructions to access stimulus images
│    │               │     ├── images_fmri <- stimulus images per category (unzip images_fmri.zip here)
│    │               │     └── annotations <- image annotations
│    │               │            ├── README.md    <- annotation doc, links to download THINGS+ ratings
│    │               │            ├── THINGS+      <- download annotations directly from THINGS+ database
│    │               │            │     ├── arousal_meanRatings.tsv
│    │               │            │     ├── category53_wideFormat.tsv
│    │               │            │     ├── imageLabeling_imageWise.tsv  
│    │               │            │     ├── imageLabeling_objectWise.tsv
│    │               │            │     ├── objectProperties_meanRatings.tsv  
│    │               │            │     ├── size_meanRatings.tsv    
│    │               │            │     └── things_concepts.tsv   
│    │               │            ├── task-things_desc-manual_annotation.json
│    │               │            └── task-things_desc-manual_annotation.tsv
│    │               ├── code
│    │               │     ├── README.md
│    │               │     ├── cleanup             <- scripts to validate events.tsv files    
│    │               │     │      ├── requirements.txt       
│    │               │     │      ├── qc_notes.md          <- notes on QCing runs & sessions        
│    │               │     │      └── clean_events.py      <- script to relabel/clean *events.tsv files
│    │               │     └── eyetracking         <- scripts to process eye-tracking data
│    │               │            ├── requirements.txt    
│    │               │            ├── step1_eyetrack_prep.py      <- exports raw gaze to numpy, plots qc charts        
│    │               │            ├── step2_eyetrack_prep.py      <- drift corrects, exports gaze and fixation metrics
│    │               │            ├── step3_reconcile_events.py   <- add fixation metrics to events files
│    │               │            └── utils.py                    <- support functions
│    │               │    
│    │               └── task-things_events.json       <- defines columns in events.tsv files
│    │
│    ├── behaviour        <- performance on the image recognition task & fixation compliance
│    │       ├── README.md
│    │       ├── code
│    │       │     ├── requirements.txt
│    │       │     ├── analyze_fixations.py        <- processes trial-wise fixations
│    │       │     ├── behav_data_annotate.py      <- builds trial-wise image annotations   
│    │       │     └── behav_data_memoperformance.py       <- computes memory scores from events.tsv files
│    │       ├── sub-0*
│    │       │     ├── fix
│    │       │     │    ├── sub-0*_task-things_desc-fixCompliance_statseries.tsv
│    │       │     │    └── sub-0*_task-things_desc-driftCor_gaze.tsv
│    │       │     └── beh
│    │       │          ├── sub-0*_task-things_desc-perTrial_annotation.tsv      
│    │       │          ├── sub-0*_task-things_catNum.tsv  
│    │       │          ├── sub-0*_task-things_imgNum.tsv  
│    │       │          ├── sub-0*_task-things_desc-perTrial_beh.tsv    
│    │       │          ├── sub-0*_task-things_desc-perRun_beh.tsv    
│    │       │          ├── sub-0*_task-things_desc-perSession_beh.tsv    
│    │       │          └── sub-0*_task-things_desc-global_beh.tsv    
│    │       ├── task-things_desc-perTrial_annotation.json
│    │       ├── task-things_desc-fixCompliance_statseries.json    
│    │       └── task-things_beh.json
│    │
│    └── glmsingle        <- GLMsingle derivatives (voxel-wise betas, noise ceilings)
│            ├── code            <- scripts to run GLMsingle and process output
│            │     ├── requirements.txt      
│            │     ├── qc
│            │     │    ├── README.md               
│            │     │    └── compile_headmotion.py   
│            │     ├── glmsingle       
│            │     │    ├── GLMsingle  <- GLMsingle repo submodule (c4e298e)    
│            │     │    ├── README.md       
│            │     │    ├── GLMsingle_makedesign.py                   
│            │     │    ├── GLMsingle_preprocBOLD.py
│            │     │    ├── GLMsingle_makerunlist.py  
│            │     │    ├── GLMsingle_cleanmask.py  
│            │     │    ├── GLMsingle_run.m    
│            │     │    ├── GLMsingle_noiseceilings.py          
│            │     │    ├── GLMsingle_betasPerTrial.py  
│            │     │    └── GLMsingle_betasPerImg.py
│            │     └── descriptive    
│            │          ├── README.md         
│            │          ├── extract_annotations.py  
│            │          ├── rank_img_perVox.py  
│            │          └── beta_scaling.py        
│            │
│            ├── task-things_runlist.h5             <- list of valid runs per subject
│            ├── task-things_imgAnnotations.json    <- dictionary of compiled image annotations
│            │
│            └── sub-0*
│                  ├── glmsingle  <- GLMsingle input and output (voxelwise betas, noise ceilings)
│                  │    ├── input    
│                  │    │     ├── sub-*_task-things_model-glmsingle_desc-sparse_design.h5
│                  │    │     ├── sub-*_task-things_imgDesignNumbers.json
│                  │    │     ├── sub-*_task-things_space-T1w_maskedBOLD.h5     
│                  │    │     ├── sub-*_task-things_space-T1w_label-brain_desc-union_mask.nii
│                  │    │     ├── sub-*_task-things_space-T1w_label-brain_desc-unionNonNaN_mask.nii
│                  │    │     ├── sub-*_task-things_space-T1w_label-brain_desc-unionNaN_mask.nii
│                  │    │     └── ...    
│                  │    └── output    
│                  │          ├── T1w
│                  │          │     ├── TYPEA_ONOFF.mat    
│                  │          │     ├── TYPEB_FITHRF.mat   
│                  │          │     ├── TYPEC_FITHRF_GLMDENOISE.mat
│                  │          │     └── TYPED_FITHRF_GLMDENOISE_RR.mat  
│                  │          ├── sub-0*_task-things_space-T1w_model-fitHrfGLMdenoiseRR_stat-imageBetas_desc-zscore_statseries.h5  
│                  │          ├── sub-0*_task-things_space-T1w_model-fitHrfGLMdenoiseRR_stat-trialBetas_desc-zscore_statseries.h5      
│                  │          └── sub-0*_task-things_space-T1w_model-fitHrfGLMdenoiseRR_stat-noiseCeilings_statmap.nii.gz
│                  │
│                  ├── qc     <- quality checks
│                  │    └── sub-0*_task-things_headmotion.tsv
│                  └── descriptive   <- annotated beta rankings and t-SNE plots per visual ROIs
│                       ├── sub-*_task-things_desc-{perImage, perTrial}_labels.npy
│                       ├── sub-*_task-things_space-T1w_stat-{betas, ranks}_desc-{perImage, perTrial}_statseries.npy
│                       ├── sub-*_task-things_space-T1w_contrast-*_roi-*_cutoff-*_nvox-*_stat-{ranks, betas, noiceCeilings}_desc-{perImage, perTrial}_statseries.npy  
│                       └── sub-*_task-things_space-T1w_stat-tSNE_label-visualROIs_desc-{perImage, perTrial}_statseries.npz    
│            
│
└── datapaper          <- Report, figures, visualization notebooks
    ├── figures        <- Graphics and figures from the report
    ├── notebooks      <- Code to generate datapaper figures
    │       ├── behav_analysis.ipynb        <- behav figures     
    │       ├── beta_ranking.ipynb          <- beta ranking figures          
    │       ├── beta_dimReduction.ipynb     <- beta t-SNE plots    
    │       ├── fixation_compliance.ipynb   <- gaze position distribution  
    │       ├── noiseCeil_flatmaps.ipynb    <- noise ceilings projected on cortical flat maps    
    │       └── head_motion.ipynb           <- framewise displacement figs  
    └── report         <- Data paper manuscript     <- TODO

About

Data, scripts and derivatives for the CNeuroMod-THINGS dataset

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published