可配置的模块化RAG框架。
GoMate是一款配置化模块化的Retrieval-Augmented Generation (RAG) 框架,旨在提供可靠的输入与可信的输出,确保用户在检索问答场景中能够获得高质量且可信赖的结果。
GoMate框架的设计核心在于其高度的可配置性和模块化,使得用户可以根据具体需求灵活调整和优化各个组件,以满足各种应用场景的要求。
“Reliable input,Trusted output”
可靠的输入,可信的输出
- RAPTOR:递归树检索器实现
pip install -r requirements.txt
from gomate.modules.document.reader import ReadFiles
from gomate.modules.store import VectorStore
docs = ReadFiles('./data/docs').get_content(max_token_len=600, cover_content=150)
vector = VectorStore(docs)
from gomate.modules.retrieval.embedding import BgeEmbedding
embedding = BgeEmbedding("BAAI/bge-large-zh-v1.5") # 创建EmbeddingModel
vector.get_vector(EmbeddingModel=embedding)
vector.persist(path='storage') # 将向量和文档内容保存到storage目录下,下次再用就可以直接加载本地的数据库
vector.load_vector(path='storage') # 加载本地的数据库
question = '伊朗坠机事故原因是什么?'
contents = vector.query(question, EmbeddingModel=embedding, k=1)
content = '\n'.join(contents[:5])
print(contents)
from gomate.modules.generator.llm import GLMChat
chat = GLMChat(path='THUDM/chatglm3-6b')
print(chat.chat(question, [], content))
docs = ReadFiles('').get_content_by_file(file='data/伊朗问题.txt', max_token_len=600, cover_content=150)
vector.add_documents('storage', docs, embedding)
question = '如今伊朗人的经济生活状况如何?'
contents = vector.query(question, EmbeddingModel=embedding, k=1)
content = '\n'.join(contents[:5])
print(contents)
print(chat.chat(question, [], content))
构建自定义的RAG应用
from gomate.modules.document.reader import ReadFiles
from gomate.modules.generator.llm import GLMChat
from gomate.modules.retrieval.embedding import BgeEmbedding
from gomate.modules.store import VectorStore
class RagApplication():
def __init__(self, config):
pass
def init_vector_store(self):
pass
def load_vector_store(self):
pass
def add_document(self, file_path):
pass
def chat(self, question: str = '', topk: int = 5):
pass
模块可见rag.py
可以配置本地模型路径
class ApplicationConfig:
llm_model_name = '/data/users/searchgpt/pretrained_models/chatglm3-6b' # 本地模型文件 or huggingface远程仓库
embedding_model_name = '/data/users/searchgpt/pretrained_models/bge-reranker-large' # 检索模型文件 or huggingface远程仓库
vector_store_path = './storage'
docs_path = './data/docs'
python app.py