Skip to content

Commit

Permalink
Merge pull request #39 from ttngu207/main
Browse files Browse the repository at this point in the history
chore: minor code cleanup
  • Loading branch information
kushalbakshi authored Aug 23, 2024
2 parents 5465016 + 475ca27 commit 217b858
Showing 1 changed file with 23 additions and 41 deletions.
64 changes: 23 additions & 41 deletions element_facemap/facemap_inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -324,7 +324,10 @@ class BodyPartPosition(dj.Part):
"""

def make(self, key):
""".populate() method will launch training for each FacemapInferenceTask"""
"""
Calls facemap.pose.Pose to run pose estimation on the video files using the specified model.
Video files and model are specified in the FacemapInferenceTask table.
"""
# ID model and directories
task_mode, output_dir = (FacemapInferenceTask & key).fetch1(
"task_mode", "facemap_inference_output_dir"
Expand Down Expand Up @@ -353,27 +356,9 @@ def make(self, key):
full_metadata_path = output_dir / f"{vid_name}_FacemapPose_metadata.pkl"

# Load or Trigger Facemap Pose Estimation Inference
if (
if task_mode == "trigger" and not (
facemap_result_path.exists() & full_metadata_path.exists()
) or task_mode == "load": # Load results and do not rerun processing
(
body_part_position_entry,
inference_duration,
total_frame_count,
creation_time,
) = _load_facemap_results(key, facemap_result_path, full_metadata_path)
self.insert1(
{
**key,
"inference_completion_time": creation_time,
"inference_run_duration": inference_duration,
"total_frame_count": total_frame_count,
}
)
self.BodyPartPosition.insert(body_part_position_entry)
return

elif task_mode == "trigger":
):
from facemap.pose import pose as facemap_pose, model_loader

bbox = (FacemapInferenceTask & key).fetch1("bbox") or []
Expand All @@ -382,9 +367,10 @@ def make(self, key):
facemap_model_name = (
FacemapModel.File & f'model_id="{key["model_id"]}"'
).fetch1("model_file")

facemap_model_path = Path.cwd() / facemap_model_name
# copy this model file to the facemap model root directory (~/.facemap/models/)
models_root_dir = model_loader.get_models_dir()
shutil.copy(facemap_model_path, models_root_dir)

# Create Symbolic Links to raw video data files from outbox directory
video_symlinks = []
Expand All @@ -395,9 +381,6 @@ def make(self, key):
video_symlink.symlink_to(video_file)
video_symlinks.append(video_symlink.as_posix())

# copy this model file to the facemap model root directory (~/.facemap/models/)
shutil.copy(facemap_model_path, models_root_dir)

# Instantiate Pose object, with filenames specified as video files, and bounding specified in params
# Assumes GUI to be none as we are running CLI implementation
pose = facemap_pose.Pose(
Expand All @@ -408,21 +391,21 @@ def make(self, key):
)
pose.run()

(
body_part_position_entry,
inference_duration,
total_frame_count,
creation_time,
) = _load_facemap_results(key, facemap_result_path, full_metadata_path)
self.insert1(
{
**key,
"inference_completion_time": creation_time,
"inference_run_duration": inference_duration,
"total_frame_count": total_frame_count,
}
)
self.BodyPartPosition.insert(body_part_position_entry)
(
body_part_position_entry,
inference_duration,
total_frame_count,
creation_time,
) = _load_facemap_results(key, facemap_result_path, full_metadata_path)
self.insert1(
{
**key,
"inference_completion_time": creation_time,
"inference_run_duration": inference_duration,
"total_frame_count": total_frame_count,
}
)
self.BodyPartPosition.insert(body_part_position_entry)

@classmethod
def get_trajectory(cls, key: dict, body_parts: list = "all") -> pd.DataFrame:
Expand Down Expand Up @@ -468,7 +451,6 @@ def get_trajectory(cls, key: dict, body_parts: list = "all") -> pd.DataFrame:

def _load_facemap_results(key, facemap_result_path, full_metadata_path):
"""Load facemap results from h5 and metadata files."""

from facemap import utils

with open(full_metadata_path, "rb") as f:
Expand Down

0 comments on commit 217b858

Please sign in to comment.