Skip to content
/ rio Public

Graph-based, sparse radar-inertial odometry estimation

License

Notifications You must be signed in to change notification settings

ethz-asl/rio

Repository files navigation

rio

Graph-based, sparse radar-inertial odometry m-estimation with barometer support and zero-velocity tracking.

Paper: https://arxiv.org/pdf/2408.05764

@inproceedings{girod2024brio,
author = {Rik Girod and Marco Hauswirth and Patrick Pfreundschuh and Mariano Biasio and Roland Siegwart},
title = {A robust baro-radar-inertial odometry m-estimator for multicopter navigation in cities and forests},
booktitle={IEEE Int. Conf. Multisensor Fusion Integration Intell. Syst.},
year={2024}
}

Installation

Install ROS noetic.

sudo apt install git build-essential python3-rosdep python3-catkin-tools ros-noetic-rqt-multiplot -y
mkdir catkin_ws
cd catkin_ws
mkdir src
catkin init
cd src
git clone https://github.com/ethz-asl/rio.git
git clone https://github.com/ethz-asl/lpp.git
git clone https://github.com/rikba/gtsam_catkin.git
cd ..
rosdep install --from-paths src --ignore-src -r -y
catkin build

Launch

Start RIO in one terminal

source ~/catkin_ws/devel/setup.bash
roslaunch rio rio.launch visualize:=true

Download an example dataset sequence.

Replay the bag

rosbag play 01_urban_night_H_raw.bag

Supported sensors

Sensor Default topic Message type Required Note
IMU /imu/data_raw sensor_msgs/Imu Yes Calibrate gyro turn-on-bias!
IMU filtered /imu/data sensor_msgs/Imu Yes for initialization
Radar /radar/cfar_detections sensor_msgs/PointCloud2 Yes
Barometer  /baro/pressure sensor_msgs/FluidPressure No Activate in cfg

Radar point cloud format, see also mav_sensors_ros.

| Field name | Size    |
| ---------- | ------- |
| x          | FLOAT32 |
| y          | FLOAT32 |
| z          | FLOAT32 |
| doppler    | FLOAT32 |
| snr        | INT16   |
| noise      | INT16   |

Dataset

The dataset contains 15 sequences of urban night, forest path, field, and deep forest handheld and flown data. It can be downloaded with and without camera images.

dataset_quadrotor_examples.mp4
Scenario No. Link w/o camera Link with camera
Urban Night 01 01_urban_night_H_raw_no_img.bag 01_urban_night_H_raw.bag
02 02_urban_night_H_raw_no_img.bag 02_urban_night_H_raw.bag
 03 03_urban_night_H_raw_no_img.bag 03_urban_night_H_raw.bag
04 04_urban_night_H_raw_no_img.bag 04_urban_night_H_raw.bag
05 05_urban_night_F_raw_no_img.bag 05_urban_night_F_raw.bag
06 06_urban_night_F_raw_no_img.bag 06_urban_night_F_raw.bag
07 07_urban_night_F_raw_no_img.bag 07_urban_night_F_raw.bag
Forest Path 08 08_forest_path_H_raw_no_img.bag 08_forest_path_H_raw.bag
09 09_forest_path_H_raw_no_img.bag 09_forest_path_H_raw.bag
10 10_forest_path_H_raw_no_img.bag 10_forest_path_H_raw.bag
11 11_forest_path_F_raw_no_img.bag 11_forest_path_F_raw.bag
12 12_forest_path_F_raw_no_img.bag 12_forest_path_F_raw.bag
Flat Field 13 13_flat_field_F_raw_no_img.bag 13_flat_field_F_raw.bag
14 14_flat_field_F_raw_no_img.bag 14_flat_field_F_raw.bag
Tree Slalom 15 15_tree_slalom_F_raw_no_img.bag 15_tree_slalom_F_raw.bag
All 01-15 raw_no_img_01-15.zip (200MB) all

Calibration

| Field name | IMU to radar | radar to cam |
| ---------- | ------------ | ------------ |
| x          | 0.122        | -0.020       |
| y          | 0.000        | -0.015       |
| z          | -0.025       | 0.000        |
| qx         | 0.67620958   | 0.000        |
| qy         | 0.67620958   | 0.7071068    |
| qz         | -0.20673802  | 0.7071068    |
| qw         | -0.20673802  | 0.000        |
<node name="imu_to_radar_broadcaster" pkg="tf2_ros" type="static_transform_publisher" args="0.122 0.000 -0.025 0.67620958 0.67620958 -0.20673802 -0.20673802 'bmi088' 'awr1843aop'" />
<node name="radar_to_cam_broadcaster" pkg="tf2_ros" type="static_transform_publisher" args="-0.020 -0.015 0.0 0.0 0.7071068 0.7071068 0.0 'awr1843aop' 'cam'" />

Calibration Optimization (Experimental)

rio_calibration_node.cpp allows you to calibrate the rigid transformation between IMU and radar.

The calibration procedure:

  1. Move the device in a loop, recording RIO odometry output (/rio/odometry_optimize), IMU (/imu/data_raw) and radar (/radar/cfar_detections). The device has to be located in the same position and orientation at start and goal to make the loop closure.
  2. Set the initial guess in calibration.yaml.
  3. roslaunch rio calibration.launch

This should refine your initial guess. Note you need to excite roll and pitch in your dataset. I noticed that you could also relax the gyro bias process noise, as it is well observable through loop closure.

Related packages

Package Description Link
mav_sensors Linux user space sensor drivers mav_sensors
mav_sensors_ros ROS sensor interface mav_sensors_ros

About

Graph-based, sparse radar-inertial odometry estimation

Resources

License

Stars

Watchers

Forks

Packages

No packages published