Skip to content
/ infinity Public
forked from infiniflow/infinity

The AI-native database built for LLM applications, providing incredibly fast vector and full-text search

License

Notifications You must be signed in to change notification settings

euvre/infinity

 
 

Repository files navigation

The AI-native database built for LLM applications, providing incredibly fast full-text and vector search

Infinity is a cutting-edge AI-native database that provides a wide range of search capabilities for rich data types such as vectors, full-text, and structured data. It provides robust support for various LLM applications, including search, recommenders, question-answering, conversational AI, copilot, content generation, and many more RAG (Retrieval-augmented Generation) applications.

🌟 Key Features

Infinity comes with high performance, flexibility, ease-of-use, and many features designed to address the challenges facing the next-generation AI applications:

⚡️ Incredibly fast

  • Achieves 0.1 milliseconds query latency on million-scale vector datasets.
  • Up to 15K QPS on million-scale vector datasets.

See the Benchmark report for more information.

🔮 Fused search

Supports a fused search of multiple embeddings and full text, in addition to filtering.

🍔 Rich data types

Supports a wide range of data types including strings, numerics, vectors, and more.

🎁 Ease-of-use

  • Intuitive Python API. See the Python API
  • A single-binary architecture with no dependencies, making deployment a breeze.

🎮 Get Started

Deploy Infinity database

Deploy Infinity using Docker on Linux x86_64 and MacOS x86_64

sudo mkdir -p /var/infinity && sudo chown -R $USER /var/infinity
docker pull infiniflow/infinity:nightly
docker run -d --name infinity -v /var/infinity/:/var/infinity --network=host infiniflow/infinity:nightly

Deploy Infinity using binary package on Linux x86_64

You can download the binary package (deb, rpm, or tgz) for your respective host operating system from https://github.com/infiniflow/infinity/releases. The prebuilt packages are compatible with Linux distributions based on glibc 2.17 or later, for example, RHEL 7, Debian 8, Ubuntu 14.04.

Fedora/RHEL/CentOS/OpenSUSE

sudo rpm -i infinity-0.1.0-dev-x86_64.rpm
sudo systemctl start infinity

Ubuntu/Debian

sudo dpkg -i infinity-0.1.0-dev-x86_64.deb
sudo systemctl start infinity

🛠️ Build from Source

See Build from Source.

Install Infinity's Python client

infinity-sdk requires Python 3.10+.

pip3 install infinity-sdk

Import necessary modules

import infinity
import infinity.index as index
from infinity.common import REMOTE_HOST
from infinity.common import ConflictType

Connect to the remote server

infinity_obj = infinity.connect(REMOTE_HOST)

Get a database

db = infinity_obj.get_database("default_db")

Create a table

# Drop my_table if it already exists
db.drop_table("my_table", ConflictType.Ignore)
# Create a table named "my_table"
table = db.create_table(
          "my_table", {
            "num": {"type": "integer"}, 
            "body": {"type": "varchar"},
            "vec": {"type": "vector, 4, float"}
          })

Insert two records

table.insert([{"num": 1, "body": "unnecessary and harmful", "vec": [1.0, 1.2, 0.8, 0.9]}])
table.insert([{"num": 2, "body": "Office for Harmful Blooms", "vec": [4.0, 4.2, 4.3, 4.5]}])

Execute a vector search

res = table.output(["*"]).knn("vec", [3.0, 2.8, 2.7, 3.1], "float", "ip", 2).to_pl()
print(res)

💡 For more information about the Python API, see the Python API Reference.

📜 Roadmap

See the Infinity Roadmap 2024

🙌 Community

About

The AI-native database built for LLM applications, providing incredibly fast vector and full-text search

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 89.1%
  • Python 8.4%
  • Yacc 1.2%
  • C 0.5%
  • CMake 0.5%
  • Shell 0.1%
  • Other 0.2%