-
Notifications
You must be signed in to change notification settings - Fork 424
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
fix multi clones w/ diff outs in stream io
- Loading branch information
Showing
2 changed files
with
68 additions
and
8 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
import os | ||
import random | ||
from pathlib import Path | ||
|
||
import numpy as np | ||
import pytest | ||
import tensorflow as tf | ||
from keras.layers import Add, Dense | ||
from tensorflow import keras | ||
|
||
from hls4ml.converters import convert_from_keras_model | ||
|
||
test_root_path = Path(__file__).parent | ||
|
||
|
||
# @pytest.fixture(scope='module') | ||
def model(): | ||
seed = 42 | ||
os.environ['RANDOM_SEED'] = f'{seed}' | ||
np.random.seed(seed) | ||
tf.random.set_seed(seed) | ||
tf.get_logger().setLevel('ERROR') | ||
random.seed(seed) | ||
|
||
inp = keras.Input(shape=(10,)) | ||
x = Dense(10)(inp) | ||
y = Dense(10)(inp) | ||
z = Dense(10)(inp) | ||
xy = Add()([x, y]) # 5 | ||
xy = Add()([xy, y]) # 5 | ||
model = keras.Model(inp, [xy, z]) | ||
return model | ||
|
||
|
||
# @pytest.fixture(scope='module') | ||
def data(): | ||
rng = np.random.RandomState(42) | ||
X = rng.normal(0, 1, (1000, 10)) | ||
return X | ||
|
||
|
||
@pytest.mark.parametrize('backend', ['Vivado', 'Quartus', 'Vitis']) | ||
def test_multi_clone(model, data, backend: str): | ||
output_dir = str(test_root_path / f'hls4mlprj_stream_multi_clone_{backend}') | ||
hls_config = {'Model': {'Precision': 'fixed<32,10>', 'ReuseFactor': 1}} | ||
model_hls = convert_from_keras_model( | ||
model, | ||
backend=backend, | ||
output_dir=output_dir, | ||
hls_config=hls_config, | ||
io_type='io_stream', # clone only happens with stream io. | ||
) | ||
model_hls.compile() | ||
r_hls = model_hls.predict(data) | ||
r_keras = [x.numpy() for x in model(data)] | ||
|
||
assert np.allclose(r_hls[0], r_keras[0], atol=5e-5, rtol=0) | ||
assert np.allclose(r_hls[1], r_keras[1], atol=5e-5, rtol=0) | ||
|
||
|
||
if __name__ == '__main__': | ||
test_multi_clone(model(), data(), 'Vivado') |