-
Notifications
You must be signed in to change notification settings - Fork 424
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
187 additions
and
16 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,85 @@ | ||
import pytest | ||
|
||
import hls4ml | ||
|
||
try: | ||
import torch | ||
import torch.nn as nn | ||
|
||
__torch_profiling_enabled__ = True | ||
except ImportError: | ||
__torch_profiling_enabled__ = False | ||
|
||
|
||
class SubClassModel(torch.nn.Module): | ||
def __init__(self, layers) -> None: | ||
super().__init__() | ||
for idx, layer in enumerate(layers): | ||
setattr(self, f'layer_{idx}', layer) | ||
|
||
|
||
class ModuleListModel(torch.nn.Module): | ||
def __init__(self, layers) -> None: | ||
super().__init__() | ||
self.layer = torch.nn.ModuleList(layers) | ||
|
||
|
||
class NestedSequentialModel(torch.nn.Module): | ||
def __init__(self, layers) -> None: | ||
super().__init__() | ||
self.model = torch.nn.Sequential(*layers) | ||
|
||
|
||
def count_bars_in_figure(fig): | ||
count = 0 | ||
for ax in fig.get_axes(): | ||
count += len(ax.patches) | ||
return count | ||
|
||
|
||
# Reusable parameter list | ||
test_layers = [ | ||
(4, [nn.Linear(10, 20), nn.Linear(20, 5)]), | ||
(3, [nn.Linear(10, 20), nn.BatchNorm1d(20)]), | ||
(6, [nn.Linear(10, 20), nn.Linear(20, 5), nn.Conv1d(3, 16, kernel_size=3)]), | ||
(6, [nn.Linear(15, 30), nn.Linear(30, 15), nn.Conv2d(1, 32, kernel_size=3)]), | ||
(6, [nn.RNN(64, 128), nn.Linear(128, 10)]), | ||
(6, [nn.LSTM(64, 128), nn.Linear(128, 10)]), | ||
(6, [nn.GRU(64, 128), nn.Linear(128, 10)]), | ||
] | ||
|
||
|
||
@pytest.mark.parametrize("layers", test_layers) | ||
def test_sequential_model(layers): | ||
if __torch_profiling_enabled__: | ||
param_count, layers = layers | ||
model = torch.nn.Sequential(*layers) | ||
wp, _, _, _ = hls4ml.model.profiling.numerical(model) | ||
assert count_bars_in_figure(wp) == param_count | ||
|
||
|
||
@pytest.mark.parametrize("layers", test_layers) | ||
def test_subclass_model(layers): | ||
if __torch_profiling_enabled__: | ||
param_count, layers = layers | ||
model = SubClassModel(layers) | ||
wp, _, _, _ = hls4ml.model.profiling.numerical(model) | ||
assert count_bars_in_figure(wp) == param_count | ||
|
||
|
||
@pytest.mark.parametrize("layers", test_layers) | ||
def test_modulelist_model(layers): | ||
if __torch_profiling_enabled__: | ||
param_count, layers = layers | ||
model = ModuleListModel(layers) | ||
wp, _, _, _ = hls4ml.model.profiling.numerical(model) | ||
assert count_bars_in_figure(wp) == param_count | ||
|
||
|
||
@pytest.mark.parametrize("layers", test_layers) | ||
def test_nested_model(layers): | ||
if __torch_profiling_enabled__: | ||
param_count, layers = layers | ||
model = NestedSequentialModel(layers) | ||
wp, _, _, _ = hls4ml.model.profiling.numerical(model) | ||
assert count_bars_in_figure(wp) == param_count |