-
Notifications
You must be signed in to change notification settings - Fork 424
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #911 from calad0i/clone_stream_fix_2
Add precision inherition for when generating stream clone
- Loading branch information
Showing
2 changed files
with
98 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
from pathlib import Path | ||
|
||
import numpy as np | ||
import pytest | ||
from keras.layers import Add, Dense | ||
from tensorflow import keras | ||
|
||
from hls4ml.converters import convert_from_keras_model | ||
|
||
test_root_path = Path(__file__).parent | ||
|
||
|
||
@pytest.fixture(scope='module') | ||
def model_clone_precision_inherition(): | ||
inp = keras.Input(shape=(10,), name='inp') | ||
x = Dense(10, name='x')(inp) | ||
y = Dense(10, name='y')(inp) | ||
out = Add(name='out')([x, y]) | ||
model = keras.Model(inp, out) | ||
return model | ||
|
||
|
||
@pytest.fixture(scope='module') | ||
def model_multi_clone(): | ||
inp = keras.Input(shape=(10,)) | ||
x = Dense(10)(inp) | ||
y = Dense(10)(inp) | ||
z = Dense(10)(inp) | ||
xy = Add()([x, y]) | ||
xy = Add()([xy, y]) | ||
out = Add()([xy, z]) | ||
model = keras.Model(inp, out) | ||
return model | ||
|
||
|
||
@pytest.fixture(scope='module') | ||
def data(): | ||
X = np.random.normal(0, 1, (1000, 10)) | ||
X = np.clip(X, -16, 15) | ||
return X | ||
|
||
|
||
@pytest.mark.parametrize('backend', ['Vivado', 'Quartus', 'Vitis']) | ||
def test_multi_clone(model_multi_clone, data, backend: str): | ||
output_dir = str(test_root_path / f'hls4mlprj_stream_clone_multiclone_{backend}') | ||
hls_config = {'Model': {'Precision': 'fixed<32,5>', 'ReuseFactor': 1}} | ||
model_hls = convert_from_keras_model( | ||
model_multi_clone, | ||
backend=backend, | ||
output_dir=output_dir, | ||
hls_config=hls_config, | ||
io_type='io_stream', # clone only happens with stream io. | ||
) | ||
model_hls.compile() | ||
r_hls = model_hls.predict(data) | ||
r_keras = model_multi_clone(data).numpy() | ||
|
||
assert np.allclose(r_hls, r_keras, atol=1e-5, rtol=0) | ||
|
||
|
||
@pytest.mark.parametrize('backend', ['Vivado', 'Quartus', 'Vitis']) | ||
def test_clone_precision_inherition(model_clone_precision_inherition, data, backend: str): | ||
output_dir = str(test_root_path / f'hls4mlprj_stream_clone_precision_{backend}') | ||
layer_config = { | ||
'inp': {'Precision': 'fixed<32,5>'}, | ||
'x': {'Precision': 'fixed<32,5>'}, | ||
'x_linear': {'Precision': 'fixed<32,5>'}, | ||
'y': {'Precision': 'fixed<32,5>'}, | ||
'y_linear': {'Precision': 'fixed<32,5>'}, | ||
'out': {'Precision': 'fixed<32,5>'}, | ||
} | ||
hls_config = {'Model': {'Precision': 'fixed<1,0>', 'ReuseFactor': 1}, 'LayerName': layer_config} | ||
model_hls = convert_from_keras_model( | ||
model_clone_precision_inherition, | ||
backend=backend, | ||
output_dir=output_dir, | ||
hls_config=hls_config, | ||
io_type='io_stream', # clone only happens with stream io. | ||
) | ||
assert model_hls.graph['clone_inp'].attributes['inp_cpy1'].type.precision.width == 32 | ||
assert model_hls.graph['clone_inp'].attributes['inp_cpy1'].type.precision.integer == 5 | ||
assert model_hls.graph['clone_inp'].attributes['inp_cpy2'].type.precision.width == 32 | ||
assert model_hls.graph['clone_inp'].attributes['inp_cpy2'].type.precision.integer == 5 | ||
|
||
model_hls.compile() | ||
r_hls = model_hls.predict(data) | ||
r_keras = model_clone_precision_inherition(data).numpy() | ||
|
||
assert np.allclose(r_hls, r_keras, atol=1e-5, rtol=0) | ||
|
||
|
||
if __name__ == '__main__': | ||
test_clone_precision_inherition(model_clone_precision_inherition(), data(), 'Vivado') |