Skip to content

A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

License

Notifications You must be signed in to change notification settings

fomichev3000/catboost

This branch is 3123 commits ahead of, 28227 commits behind catboost/catboost:master.

Folders and files

NameName
Last commit message
Last commit date
Jan 19, 2022
Jan 19, 2022
Jan 19, 2022
Jan 18, 2022
Jan 18, 2022
Jan 19, 2022
Jan 19, 2022
Jul 23, 2019
Jan 19, 2022
Jan 19, 2022
Jan 18, 2022
Jan 19, 2022
Jan 19, 2022
Jan 19, 2022
Jan 18, 2022
Jul 18, 2017
Jul 27, 2018
Jan 18, 2022
Jan 18, 2022
Sep 21, 2017
Jan 18, 2022
Aug 3, 2017
Jan 18, 2022
Jan 18, 2022
Jan 18, 2022
Sep 25, 2019
Jan 18, 2022
Jan 19, 2022
Jul 11, 2019
Jan 19, 2022
Jan 18, 2022
Apr 11, 2019
Jul 18, 2017

Repository files navigation

Website | Documentation | Tutorials | Installation | Release Notes

GitHub license PyPI version Conda Version GitHub issues Telegram

CatBoost is a machine learning method based on gradient boosting over decision trees.

Main advantages of CatBoost:

Get Started and Documentation

All CatBoost documentation is available here.

Install CatBoost by following the guide for the

Next you may want to investigate:

If you cannot open documentation in your browser try adding yastatic.net and yastat.net to the list of allowed domains in your privacy badger.

Catboost models in production

If you want to evaluate Catboost model in your application read model api documentation.

Questions and bug reports

Help to Make CatBoost Better

  • Check out open problems and help wanted issues to see what can be improved, or open an issue if you want something.
  • Add your stories and experience to Awesome CatBoost.
  • To contribute to CatBoost you need to first read CLA text and add to your pull request, that you agree to the terms of the CLA. More information can be found in CONTRIBUTING.md
  • Instructions for contributors can be found here.

News

Latest news are published on twitter.

Reference Paper

Anna Veronika Dorogush, Andrey Gulin, Gleb Gusev, Nikita Kazeev, Liudmila Ostroumova Prokhorenkova, Aleksandr Vorobev "Fighting biases with dynamic boosting". arXiv:1706.09516, 2017.

Anna Veronika Dorogush, Vasily Ershov, Andrey Gulin "CatBoost: gradient boosting with categorical features support". Workshop on ML Systems at NIPS 2017.

License

© YANDEX LLC, 2017-2019. Licensed under the Apache License, Version 2.0. See LICENSE file for more details.

About

A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C 30.4%
  • C++ 23.0%
  • Python 19.6%
  • Makefile 17.3%
  • Assembly 5.4%
  • Cython 1.8%
  • Other 2.5%