Skip to content

Commit

Permalink
Merge pull request #260 from MeikeWeiss/meike/waists
Browse files Browse the repository at this point in the history
  • Loading branch information
ReymondAkpanya authored Sep 11, 2024
2 parents f4d62f8 + 65a4bf6 commit 25baabb
Show file tree
Hide file tree
Showing 2 changed files with 58 additions and 19 deletions.
44 changes: 32 additions & 12 deletions gap/Paths/paths.gd
Original file line number Diff line number Diff line change
Expand Up @@ -1197,8 +1197,18 @@ DeclareAttribute( "ViewInformation", IsEdgeFacePath );
#! @Section Waists
#! @SectionLabel Waists
#! This section deals with a specific type of closed vertex-edge-paths, namely waists.
#! A n-waist is a closed vertex-edge path of length n such that all edges are inner and no two are incident to the same face.
#! This will be illustrated on the following double tetrahedron:
#! In order to introduce the definition of a waist of a simplicial surface, we first
#! present the definition of a distance-faithful path. Here, a closed edge path <M>P</M> of
#! a given simplicial surface is called distance-faithful if for any two vertices of the
#! path <M>P</M> at least one shortest edge path between them is contained in <M>P</M>.
#! Using the above notion we introduce waists of simplicial surfaces.
#! Let therefore <M>n</M> be a natural number. If <M>n</M> is equal to 2 or 3,
#! then an <M>n</M>-waist of a given simplicial surface is defined as a circular edge
#! path of length <M>n</M> such that all edges are inner and no two are incident to the same face.
#! Moreover, if the given simplicial surface is closed without 3-waists and <M>n</M> is at least 4,
#! then we define an <M>n</M>-waist as a closed distance-faithful edge path of length <M>n</M>.
#!
#! This will be illustrated on the following simplicial surface constructed by three tetrahedra:
#! <Alt Only="HTML">
#! &lt;img src="./images/_Wrapper_Image_Example3Waist-1.svg"> &lt;/img>
#! </Alt>
Expand All @@ -1211,7 +1221,7 @@ DeclareAttribute( "ViewInformation", IsEdgeFacePath );
#! Image omitted in terminal text
#! </Alt>
#! @BeginExampleSession
#! gap> doubleTetra:=SimplicialSurfaceByVerticesInFaces(
#! gap> tripleTetra:=SimplicialSurfaceByVerticesInFaces(
#! > [[1,3,5],[2,5,6],[2,3,5],[2,3,6],[1,4,5],[3,4,6],[1,3,4],[4,5,6]]);;
#! @EndExampleSession

Expand All @@ -1220,17 +1230,24 @@ DeclareAttribute( "ViewInformation", IsEdgeFacePath );
#! Return whether the given path <A>vertexEdgePath</A> is a waist in <A>complex</A>.
#! The definition of a waist is given at the beginning of section <Ref Sect="Section_Waists"/>.
#!
#! For example, consider the double tetrahedron from the start of section <Ref Sect="Section_Waists"/>.
#! For example, consider the simplicial surface from the start of section <Ref Sect="Section_Waists"/>.
#! The path around a face is not a waist:
#! @BeginExampleSession
#! gap> path:=VertexEdgePathByEdges(doubleTetra,[1,3,8]);;
#! gap> IsWaist(doubleTetra, path);
#! gap> path:=VertexEdgePathByEdges(tripleTetra,[1,3,8]);;
#! gap> IsWaist(tripleTetra, path);
#! false
#! @EndExampleSession
#! A path of length three, where the edges are pairwise incident to two different faces, is a waist:
#! @BeginExampleSession
#! gap> waist:=VertexEdgePathByEdges(doubleTetra,[7,8,10]);;
#! gap> IsWaist(doubleTetra, waist);
#! gap> waist:=VertexEdgePathByEdges(tripleTetra,[7,8,10]);;
#! gap> IsWaist(tripleTetra, waist);
#! true
#! @EndExampleSession
#! The octahedron has a waist of length four:
#! @BeginExampleSession
#! gap> path:=VertexEdgePathByEdges(Octahedron(),[5,6,10,8]);
#! ( v3, E5, v2, E6, v5, E10, v4, E8, v3 )
#! gap> IsWaist(Octahedron(),path);
#! true
#! @EndExampleSession
#!
Expand Down Expand Up @@ -1281,9 +1298,9 @@ DeclareAttribute( "AllTwoWaistsOfComplex", IsTwistedPolygonalComplex);
#! vertices so that there exist no face in <A>complex</A> that is incident to more
#! than one of the visited edges.
#!
#! For example, consider the double tetrahedron from the start of section <Ref Sect="Section_Waists"/>:
#! For example, consider the simplicial surface from the start of section <Ref Sect="Section_Waists"/>:
#! @BeginExampleSession
#! gap> AllThreeWaistsOfComplex(doubleTetra);
#! gap> AllThreeWaistsOfComplex(tripleTetra);
#! [ ( v4, E7, v3, E8, v5, E10, v4 ), ( v5, E8, v3, E9, v6, E12, v5 ) ]
#! @EndExampleSession
#! The tetrahedron does not have any 3-waist:
Expand All @@ -1302,10 +1319,13 @@ DeclareAttribute( "AllThreeWaistsOfComplex", IsTwistedPolygonalComplex);
#! Return the set of all waists contained in the given polygonal complex <A>complex</A>.
#! The definition of a waist is given at the beginning of section <Ref Sect="Section_Waists"/>.
#!
#! For example, consider the double tetrahedron from the start of section <Ref Sect="Section_Waists"/>:
#! For example, consider the simplicial surface from the start of section <Ref Sect="Section_Waists"/>:
#! @BeginLogSession
#! gap> AllWaistsOfComplex(doubleTetra);
#! gap> AllWaistsOfComplex(tripleTetra);
#! [ ( v5, E10, v4, E7, v3, E8, v5 ), ( v5, E12, v6, E9, v3, E8, v5 ) ]
#! gap> AllWaistsOfComplex(Octahedron());
#! [ ( v1, E1, v2, E7, v6, E11, v4, E3, v1 ), ( v3, E2, v1, E4, v5, E12, v6, E9, v3 ),
#! ( v3, E5, v2, E6, v5, E10, v4, E8, v3 ) ]
#! @EndLogSession
#!
#! @Returns a set of closed vertex-edge-paths
Expand Down
33 changes: 26 additions & 7 deletions gap/Paths/paths.gi
Original file line number Diff line number Diff line change
Expand Up @@ -951,9 +951,9 @@ InstallMethod(ShiftCyclicPath,
InstallMethod(IsWaist, "for a complex and a vertex-edge path",
[IsTwistedPolygonalComplex, IsVertexEdgePath],
function(complex,path)
local edges, incidentFaces, e, foe;
local edges, incidentFaces, e, foe, edgeGraph, vertices, subdigr, i, lastV, vertex;

edges:=EdgesAsList(path);

incidentFaces:=[];
if ForAll(edges, e->IsInnerEdge(complex,e)) and IsClosedPath(path) then
# check if the edges are not incident to the same faces
Expand All @@ -965,6 +965,21 @@ InstallMethod(IsWaist, "for a complex and a vertex-edge path",
return false;
fi;
od;

# check distance-faithful
if Length(edges)>3 then
edgeGraph:=EdgeDigraphsGraph(complex);
vertices:=ShallowCopy(VerticesAsList(path));
Remove(vertices);
subdigr:=InducedSubdigraph(edgeGraph,vertices);
lastV:=Position(DigraphVertexLabels(subdigr),Last(vertices));
for i in [1..Length(vertices)-1] do
vertex:=Position(DigraphVertexLabels(subdigr),vertices[i]);
if DigraphShortestDistance(edgeGraph,vertices[i],Last(vertices))<>DigraphShortestDistance(subdigr,vertex,lastV) then
return false;
fi;
od;
fi;
else
return false;
fi;
Expand Down Expand Up @@ -1007,14 +1022,18 @@ end
InstallMethod(AllWaistsOfComplex, "for a twisted polygonal complex",
[IsTwistedPolygonalComplex],
function(complex)
local cycles, waists, c, edges, incident, incidentFaces, e, foe;

cycles:=AllClosedVertexEdgePaths(complex);
local threeWaists, cycles, waists, c, edges, incident, incidentFaces, e, foe;

threeWaists:=AllThreeWaistsOfComplex(complex);
if threeWaists<>[] then
return Concatenation(threeWaists,AllTwoWaistsOfComplex(complex));
fi;
cycles:=AllClosedVertexEdgePaths(complex);
waists:=[];

for c in cycles do
if IsWaist(complex,c) then
Add(waists,c);
if IsWaist(complex,c) then
Add(waists,c);
fi;
od;
return waists;
Expand Down

0 comments on commit 25baabb

Please sign in to comment.