-
Notifications
You must be signed in to change notification settings - Fork 335
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
docs: Add WaveML H2O-3 Algo example (#871)
- Loading branch information
Showing
3 changed files
with
70 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
# WaveML / H2O-3 / Algo | ||
# Configure a specific algo for Wave Models built using H2O-3 AutoML. | ||
# --- | ||
from h2o_wave import main, app, Q, ui, copy_expando | ||
from h2o_wave_ml import build_model, ModelType | ||
|
||
from sklearn.datasets import load_wine | ||
from sklearn.model_selection import train_test_split | ||
|
||
|
||
@app('/demo') | ||
async def serve(q: Q): | ||
if q.args.train: | ||
# train WaveML Model using H2O-3 AutoML | ||
copy_expando(q.args, q.client) | ||
q.client.wave_model = build_model( | ||
train_df=q.client.train_df, | ||
target_column='target', | ||
model_type=ModelType.H2O3, | ||
_h2o3_max_runtime_secs=30, | ||
_h2o3_nfolds=2, | ||
_h2o3_include_algos=[q.client.algo] | ||
) | ||
model_id = q.client.wave_model.model.model_id | ||
accuracy = round(100 - q.client.wave_model.model.mean_per_class_error() * 100, 2) | ||
|
||
# show training details and prediction option | ||
q.page['example'].items[1].choice_group.value = q.client.algo | ||
q.page['example'].items[2].buttons.items[1].button.disabled = False | ||
q.page['example'].items[3].message_bar.type = 'success' | ||
q.page['example'].items[3].message_bar.text = 'Training successfully completed!' | ||
q.page['example'].items[4].text.content = f'''**H2O AutoML model id:** {model_id} <br /> | ||
**Accuracy:** {accuracy}%''' | ||
q.page['example'].items[5].text.content = '' | ||
elif q.args.predict: | ||
# predict on test data | ||
preds = q.client.wave_model.predict(test_df=q.client.test_df) | ||
|
||
# show predictions | ||
q.page['example'].items[3].message_bar.text = 'Prediction successfully completed!' | ||
q.page['example'].items[5].text.content = f'''**Example predictions:** <br /> | ||
{preds[0]} <br /> {preds[1]} <br /> {preds[2]}''' | ||
else: | ||
# prepare sample train and test dataframes | ||
data = load_wine(as_frame=True)['frame'] | ||
q.client.train_df, q.client.test_df = train_test_split(data, train_size=0.8) | ||
|
||
# algos | ||
algo_choices = [ui.choice(x, x) for x in ['DRF', 'GLM', 'XGBoost', 'GBM', 'DeepLearning']] | ||
|
||
# display ui | ||
q.page['example'] = ui.form_card( | ||
box='1 1 -1 -1', | ||
items=[ | ||
ui.text(content='''The sample dataset used is the | ||
<a href="https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_wine.html" target="_blank">wine dataset</a>.'''), | ||
ui.choice_group(name='algo', label='Select Algo', choices=algo_choices, value='DRF'), | ||
ui.buttons(items=[ | ||
ui.button(name='train', label='Train', primary=True), | ||
ui.button(name='predict', label='Predict', primary=True, disabled=True), | ||
]), | ||
ui.message_bar(type='warning', text='Training will take a few seconds'), | ||
ui.text(content=''), | ||
ui.text(content='') | ||
] | ||
) | ||
|
||
await q.page.save() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters