Skip to content

Clean, scalable and easy to use ResNet implementation in Pytorch

License

Notifications You must be signed in to change notification settings

harshithbelagur/ResNet

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

import torch
import torch.nn as nn

from functools import partial
from dataclasses import dataclass
from collections import OrderedDict

Implementing ResNet in PyTorch

Today we are going to implement the famous ResNet from Kaiming He et al. (Microsoft Research). It won the 1st place on the ILSVRC 2015 classification task.

The original paper can be read from here and it is very easy to follow, additional material can be found in this quora answer alt

Deeper neural networks are more difficult to train. Why? One big problem of deeper network is the vanishing gradient. Basically, the model is not able to learn anymore.

To solve this problem, the Authors proposed to use a reference to the previous layer to compute the output at a given layer. In ResNet, the output form the previous layer, called residual, is added to the output of the current layer. The following picture visualizes this operation

alt

We are going to make our implementation as scalable as possible using one think think unknown to mostly of the data scientiest: object orienting programming

Basic Block

Okay, the first thing is to think about what we need. Well, first of all we need a convolution layer and since PyTorch does not have the 'auto' padding in Conv2d, so we have to code ourself!

class Conv2dAuto(nn.Conv2d):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.padding =  (self.kernel_size[0] // 2, self.kernel_size[1] // 2) # dynamic add padding based on the kernel_size
        
conv3x3 = partial(Conv2dAuto, kernel_size=3, bias=False)      
        
conv = conv3x3(in_channels=32, out_channels=64)
print(conv)
del conv
Conv2dAuto(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)

Residual Block

To make clean code is mandatory to think about the main building block of each application, or of the network in our case. The residual block takes an input with in_channels, applies some blocks of convolutional layers to reduce it to out_channels and sum it up to the original input. If their sizes mismatch, then the input goes into an identity. We can abstract this process and create a interface that can be extedend.

class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.in_channels, self.out_channels =  in_channels, out_channels
        self.blocks = nn.Identity()
        self.shortcut = nn.Identity()   
    
    def forward(self, x):
        residual = x
        if self.should_apply_shortcut: residual = self.shortcut(x)
        x = self.blocks(x)
        x += residual
        return x
    
    @property
    def should_apply_shortcut(self):
        return self.in_channels != self.out_channels
ResidualBlock(32, 64)
ResidualBlock(
  (blocks): Identity()
  (shortcut): Identity()
)

Let's test it with a dummy vector with one one, we should get a vector with two

dummy = torch.ones((1, 1, 1, 1))

block = ResidualBlock(1, 64)
block(dummy)
tensor([[[[2.]]]])

In ResNet each block has a expansion parameter in order to increase the out_channels. Also, the identity is defined as a Convolution followed by an Activation layer, this is referred as shortcut. Then, we can just extend ResidualBlock and defined the shortcut function.

from collections import OrderedDict

class ResNetResidualBlock(ResidualBlock):
    def __init__(self, in_channels, out_channels, expansion=1, downsampling=1, conv=conv3x3, *args, **kwargs):
        super().__init__(in_channels, out_channels)
        self.expansion, self.downsampling, self.conv = expansion, downsampling, conv
        self.shortcut = nn.Sequential(OrderedDict(
        {
            'conv' : nn.Conv2d(self.in_channels, self.expanded_channels, kernel_size=1,
                      stride=self.downsampling, bias=False),
            'bn' : nn.BatchNorm2d(self.expanded_channels)
            
        })) if self.should_apply_shortcut else None
        
        
    @property
    def expanded_channels(self):
        return self.out_channels * self.expansion
    
    @property
    def should_apply_shortcut(self):
        return self.in_channels != self.expanded_channels
ResNetResidualBlock(32, 64)
ResNetResidualBlock(
  (blocks): Identity()
  (shortcut): Sequential(
    (conv): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
)

Basic Block

A basic ResNet block is composed by two layers of 3x3 convs/batchnorm/relu. In the picture, the lines represnet the residual operation. The dotted line means that the shortcut was applied to match the input and the output dimension. alt

Let's first create an handy function to stack one conv and batchnorm layer. Using OrderedDict to properly name each sublayer.

from collections import OrderedDict
def conv_bn(in_channels, out_channels, conv, *args, **kwargs):
    return nn.Sequential(OrderedDict({'conv': conv(in_channels, out_channels, *args, **kwargs), 
                          'bn': nn.BatchNorm2d(out_channels) }))
conv_bn(3, 3, nn.Conv2d, kernel_size=3)
Sequential(
  (conv): Conv2d(3, 3, kernel_size=(3, 3), stride=(1, 1))
  (bn): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
class ResNetBasicBlock(ResNetResidualBlock):
    expansion = 1
    def __init__(self, in_channels, out_channels, activation=nn.ReLU, *args, **kwargs):
        super().__init__(in_channels, out_channels, *args, **kwargs)
        self.blocks = nn.Sequential(
            conv_bn(self.in_channels, self.out_channels, conv=self.conv, bias=False, stride=self.downsampling),
            activation(),
            conv_bn(self.out_channels, self.expanded_channels, conv=self.conv, bias=False),
        )
    
dummy = torch.ones((1, 32, 224, 224))

block = ResNetBasicBlock(32, 64)
block(dummy).shape
print(block)
ResNetBasicBlock(
  (blocks): Sequential(
    (0): Sequential(
      (conv): Conv2dAuto(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (1): ReLU()
    (2): Sequential(
      (conv): Conv2dAuto(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (shortcut): Sequential(
    (conv): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
)

BottleNeck

To increase the network deepths but to decrese the number of parameters, the Authors defined a BottleNeck block that "The three layers are 1x1, 3x3, and 1x1 convolutions, where the 1Ă—1 layers are responsible for reducing and then increasing (restoring) dimensions, leaving the 3Ă—3 layer a bottleneck with smaller input/output dimensions." We can extend the ResNetResidualBlock and create these blocks.

class ResNetBottleNeckBlock(ResNetResidualBlock):
    expansion = 4
    def __init__(self, in_channels, out_channels, activation=nn.ReLU, *args, **kwargs):
        super().__init__(in_channels, out_channels, expansion=4, *args, **kwargs)
        self.blocks = nn.Sequential(
           conv_bn(self.in_channels, self.out_channels, self.conv, kernel_size=1),
             activation(),
             conv_bn(self.out_channels, self.out_channels, self.conv, kernel_size=3, stride=self.downsampling),
             activation(),
             conv_bn(self.out_channels, self.expanded_channels, self.conv, kernel_size=1),
        )
    
dummy = torch.ones((1, 32, 10, 10))

block = ResNetBottleNeckBlock(32, 64)
block(dummy).shape
print(block)
ResNetBottleNeckBlock(
  (blocks): Sequential(
    (0): Sequential(
      (conv): Conv2dAuto(32, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (1): ReLU()
    (2): Sequential(
      (conv): Conv2dAuto(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (3): ReLU()
    (4): Sequential(
      (conv): Conv2dAuto(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (shortcut): Sequential(
    (conv): Conv2d(32, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
)

Layer

A ResNet's layer is composed by blocks stacked one after the other.

alt

We can easily defined it by just stuck n blocks one after the other, just remember that the first convolution block has a stide of two since "We perform downsampling directly by convolutional layers that have a stride of 2".

class ResNetLayer(nn.Module):
    def __init__(self, in_channels, out_channels, block=ResNetBasicBlock, n=1, *args, **kwargs):
        super().__init__()
        # 'We perform downsampling directly by convolutional layers that have a stride of 2.'
        downsampling = 2 if in_channels != out_channels else 1
        
        self.blocks = nn.Sequential(
            block(in_channels , out_channels, *args, **kwargs, downsampling=downsampling),
            *[block(out_channels * block.expansion, 
                    out_channels, downsampling=1, *args, **kwargs) for _ in range(n - 1)]
        )

    def forward(self, x):
        x = self.blocks(x)
        return x
dummy = torch.ones((1, 32, 48, 48))

layer = ResNetLayer(64, 128, block=ResNetBasicBlock, n=3)
# layer(dummy).shape
layer
ResNetLayer(
  (blocks): Sequential(
    (0): ResNetBasicBlock(
      (blocks): Sequential(
        (0): Sequential(
          (conv): Conv2dAuto(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (1): ReLU()
        (2): Sequential(
          (conv): Conv2dAuto(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (shortcut): Sequential(
        (conv): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): ResNetBasicBlock(
      (blocks): Sequential(
        (0): Sequential(
          (conv): Conv2dAuto(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (1): ReLU()
        (2): Sequential(
          (conv): Conv2dAuto(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (shortcut): None
    )
    (2): ResNetBasicBlock(
      (blocks): Sequential(
        (0): Sequential(
          (conv): Conv2dAuto(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (1): ReLU()
        (2): Sequential(
          (conv): Conv2dAuto(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (shortcut): None
    )
  )
)

Encoder

Similarly, the encoder is composed by multiple layer at increasing features size.

alt

class ResNetEncoder(nn.Module):
    """
    ResNet encoder composed by increasing different layers with increasing features.
    """
    def __init__(self, in_channels=3, blocks_sizes=[64, 128, 256, 512], deepths=[2,2,2,2], 
                 activation=nn.ReLU, block=ResNetBasicBlock, *args,**kwargs):
        super().__init__()
        
        self.blocks_sizes = blocks_sizes
        
        self.gate = nn.Sequential(
            nn.Conv2d(in_channels, self.blocks_sizes[0], kernel_size=7, stride=2, padding=3, bias=False),
            nn.BatchNorm2d(self.blocks_sizes[0]),
            activation(),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        )
        
        self.in_out_block_sizes = list(zip(blocks_sizes, blocks_sizes[1:]))
        self.blocks = nn.ModuleList([ 
            ResNetLayer(blocks_sizes[0], blocks_sizes[0], n=deepths[0], activation=activation, 
                        block=block,  *args, **kwargs),
            *[ResNetLayer(in_channels * block.expansion, 
                          out_channels, n=n, activation=activation, 
                          block=block, *args, **kwargs) 
              for (in_channels, out_channels), n in zip(self.in_out_block_sizes, deepths[1:])]       
        ])
        
        
    def forward(self, x):
        x = self.gate(x)
        for block in self.blocks:
            x = block(x)
        return x

Decoder

The decoder is the last piece we need to create the full network. It is a fully connected layer that maps the features learned by the network to their respective classes. Easily, we can defined it as:

class ResnetDecoder(nn.Module):
    """
    This class represents the tail of ResNet. It performs a global pooling and maps the output to the
    correct class by using a fully connected layer.
    """
    def __init__(self, in_features, n_classes):
        super().__init__()
        self.avg = nn.AdaptiveAvgPool2d((1, 1))
        self.decoder = nn.Linear(in_features, n_classes)

    def forward(self, x):
        x = self.avg(x)
        x = x.view(x.size(0), -1)
        x = self.decoder(x)
        return x

ResNet

Final, we can put all the pieces together and create the final model.

alt

class ResNet(nn.Module):
    
    def __init__(self, in_channels, n_classes, *args, **kwargs):
        super().__init__()
        self.encoder = ResNetEncoder(in_channels, *args, **kwargs)
        self.decoder = ResnetDecoder(self.encoder.blocks[-1].blocks[-1].expanded_channels, n_classes)
        
    def forward(self, x):
        x = self.encoder(x)
        x = self.decoder(x)
        return x

We can now defined the five models proposed by the Authors, resnet18,34,50,101,152

def resnet18(in_channels, n_classes):
    return ResNet(in_channels, n_classes, block=ResNetBasicBlock, deepths=[2, 2, 2, 2])

def resnet34(in_channels, n_classes):
    return ResNet(in_channels, n_classes, block=ResNetBasicBlock, deepths=[3, 4, 6, 3])

def resnet50(in_channels, n_classes):
    return ResNet(in_channels, n_classes, block=ResNetBottleNeckBlock, deepths=[3, 4, 6, 3])

def resnet101(in_channels, n_classes):
    return ResNet(in_channels, n_classes, block=ResNetBottleNeckBlock, deepths=[3, 4, 23, 3])

def resnet152(in_channels, n_classes):
    return ResNet(in_channels, n_classes, block=ResNetBottleNeckBlock, deepths=[3, 8, 36, 3])
from torchsummary import summary

model = resnet101(3, 1000)
summary(model.cuda(), (3, 224, 224))
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 64, 112, 112]           9,408
       BatchNorm2d-2         [-1, 64, 112, 112]             128
              ReLU-3         [-1, 64, 112, 112]               0
         MaxPool2d-4           [-1, 64, 56, 56]               0
            Conv2d-5          [-1, 256, 56, 56]          16,384
       BatchNorm2d-6          [-1, 256, 56, 56]             512
        Conv2dAuto-7           [-1, 64, 56, 56]           4,096
       BatchNorm2d-8           [-1, 64, 56, 56]             128
              ReLU-9           [-1, 64, 56, 56]               0
       Conv2dAuto-10           [-1, 64, 56, 56]          36,864
      BatchNorm2d-11           [-1, 64, 56, 56]             128
             ReLU-12           [-1, 64, 56, 56]               0
       Conv2dAuto-13          [-1, 256, 56, 56]          16,384
      BatchNorm2d-14          [-1, 256, 56, 56]             512
ResNetBottleNeckBlock-15          [-1, 256, 56, 56]               0
       Conv2dAuto-16           [-1, 64, 56, 56]          16,384
      BatchNorm2d-17           [-1, 64, 56, 56]             128
             ReLU-18           [-1, 64, 56, 56]               0
       Conv2dAuto-19           [-1, 64, 56, 56]          36,864
      BatchNorm2d-20           [-1, 64, 56, 56]             128
             ReLU-21           [-1, 64, 56, 56]               0
       Conv2dAuto-22          [-1, 256, 56, 56]          16,384
      BatchNorm2d-23          [-1, 256, 56, 56]             512
ResNetBottleNeckBlock-24          [-1, 256, 56, 56]               0
       Conv2dAuto-25           [-1, 64, 56, 56]          16,384
      BatchNorm2d-26           [-1, 64, 56, 56]             128
             ReLU-27           [-1, 64, 56, 56]               0
       Conv2dAuto-28           [-1, 64, 56, 56]          36,864
      BatchNorm2d-29           [-1, 64, 56, 56]             128
             ReLU-30           [-1, 64, 56, 56]               0
       Conv2dAuto-31          [-1, 256, 56, 56]          16,384
      BatchNorm2d-32          [-1, 256, 56, 56]             512
ResNetBottleNeckBlock-33          [-1, 256, 56, 56]               0
      ResNetLayer-34          [-1, 256, 56, 56]               0
           Conv2d-35          [-1, 512, 28, 28]         131,072
      BatchNorm2d-36          [-1, 512, 28, 28]           1,024
       Conv2dAuto-37          [-1, 128, 56, 56]          32,768
      BatchNorm2d-38          [-1, 128, 56, 56]             256
             ReLU-39          [-1, 128, 56, 56]               0
       Conv2dAuto-40          [-1, 128, 28, 28]         147,456
      BatchNorm2d-41          [-1, 128, 28, 28]             256
             ReLU-42          [-1, 128, 28, 28]               0
       Conv2dAuto-43          [-1, 512, 28, 28]          65,536
      BatchNorm2d-44          [-1, 512, 28, 28]           1,024
ResNetBottleNeckBlock-45          [-1, 512, 28, 28]               0
       Conv2dAuto-46          [-1, 128, 28, 28]          65,536
      BatchNorm2d-47          [-1, 128, 28, 28]             256
             ReLU-48          [-1, 128, 28, 28]               0
       Conv2dAuto-49          [-1, 128, 28, 28]         147,456
      BatchNorm2d-50          [-1, 128, 28, 28]             256
             ReLU-51          [-1, 128, 28, 28]               0
       Conv2dAuto-52          [-1, 512, 28, 28]          65,536
      BatchNorm2d-53          [-1, 512, 28, 28]           1,024
ResNetBottleNeckBlock-54          [-1, 512, 28, 28]               0
       Conv2dAuto-55          [-1, 128, 28, 28]          65,536
      BatchNorm2d-56          [-1, 128, 28, 28]             256
             ReLU-57          [-1, 128, 28, 28]               0
       Conv2dAuto-58          [-1, 128, 28, 28]         147,456
      BatchNorm2d-59          [-1, 128, 28, 28]             256
             ReLU-60          [-1, 128, 28, 28]               0
       Conv2dAuto-61          [-1, 512, 28, 28]          65,536
      BatchNorm2d-62          [-1, 512, 28, 28]           1,024
ResNetBottleNeckBlock-63          [-1, 512, 28, 28]               0
       Conv2dAuto-64          [-1, 128, 28, 28]          65,536
      BatchNorm2d-65          [-1, 128, 28, 28]             256
             ReLU-66          [-1, 128, 28, 28]               0
       Conv2dAuto-67          [-1, 128, 28, 28]         147,456
      BatchNorm2d-68          [-1, 128, 28, 28]             256
             ReLU-69          [-1, 128, 28, 28]               0
       Conv2dAuto-70          [-1, 512, 28, 28]          65,536
      BatchNorm2d-71          [-1, 512, 28, 28]           1,024
ResNetBottleNeckBlock-72          [-1, 512, 28, 28]               0
      ResNetLayer-73          [-1, 512, 28, 28]               0
           Conv2d-74         [-1, 1024, 14, 14]         524,288
      BatchNorm2d-75         [-1, 1024, 14, 14]           2,048
       Conv2dAuto-76          [-1, 256, 28, 28]         131,072
      BatchNorm2d-77          [-1, 256, 28, 28]             512
             ReLU-78          [-1, 256, 28, 28]               0
       Conv2dAuto-79          [-1, 256, 14, 14]         589,824
      BatchNorm2d-80          [-1, 256, 14, 14]             512
             ReLU-81          [-1, 256, 14, 14]               0
       Conv2dAuto-82         [-1, 1024, 14, 14]         262,144
      BatchNorm2d-83         [-1, 1024, 14, 14]           2,048
ResNetBottleNeckBlock-84         [-1, 1024, 14, 14]               0
       Conv2dAuto-85          [-1, 256, 14, 14]         262,144
      BatchNorm2d-86          [-1, 256, 14, 14]             512
             ReLU-87          [-1, 256, 14, 14]               0
       Conv2dAuto-88          [-1, 256, 14, 14]         589,824
      BatchNorm2d-89          [-1, 256, 14, 14]             512
             ReLU-90          [-1, 256, 14, 14]               0
       Conv2dAuto-91         [-1, 1024, 14, 14]         262,144
      BatchNorm2d-92         [-1, 1024, 14, 14]           2,048
ResNetBottleNeckBlock-93         [-1, 1024, 14, 14]               0
       Conv2dAuto-94          [-1, 256, 14, 14]         262,144
      BatchNorm2d-95          [-1, 256, 14, 14]             512
             ReLU-96          [-1, 256, 14, 14]               0
       Conv2dAuto-97          [-1, 256, 14, 14]         589,824
      BatchNorm2d-98          [-1, 256, 14, 14]             512
             ReLU-99          [-1, 256, 14, 14]               0
      Conv2dAuto-100         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-101         [-1, 1024, 14, 14]           2,048
ResNetBottleNeckBlock-102         [-1, 1024, 14, 14]               0
      Conv2dAuto-103          [-1, 256, 14, 14]         262,144
     BatchNorm2d-104          [-1, 256, 14, 14]             512
            ReLU-105          [-1, 256, 14, 14]               0
      Conv2dAuto-106          [-1, 256, 14, 14]         589,824
     BatchNorm2d-107          [-1, 256, 14, 14]             512
            ReLU-108          [-1, 256, 14, 14]               0
      Conv2dAuto-109         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-110         [-1, 1024, 14, 14]           2,048
ResNetBottleNeckBlock-111         [-1, 1024, 14, 14]               0
      Conv2dAuto-112          [-1, 256, 14, 14]         262,144
     BatchNorm2d-113          [-1, 256, 14, 14]             512
            ReLU-114          [-1, 256, 14, 14]               0
      Conv2dAuto-115          [-1, 256, 14, 14]         589,824
     BatchNorm2d-116          [-1, 256, 14, 14]             512
            ReLU-117          [-1, 256, 14, 14]               0
      Conv2dAuto-118         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-119         [-1, 1024, 14, 14]           2,048
ResNetBottleNeckBlock-120         [-1, 1024, 14, 14]               0
      Conv2dAuto-121          [-1, 256, 14, 14]         262,144
     BatchNorm2d-122          [-1, 256, 14, 14]             512
            ReLU-123          [-1, 256, 14, 14]               0
      Conv2dAuto-124          [-1, 256, 14, 14]         589,824
     BatchNorm2d-125          [-1, 256, 14, 14]             512
            ReLU-126          [-1, 256, 14, 14]               0
      Conv2dAuto-127         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-128         [-1, 1024, 14, 14]           2,048
ResNetBottleNeckBlock-129         [-1, 1024, 14, 14]               0
      Conv2dAuto-130          [-1, 256, 14, 14]         262,144
     BatchNorm2d-131          [-1, 256, 14, 14]             512
            ReLU-132          [-1, 256, 14, 14]               0
      Conv2dAuto-133          [-1, 256, 14, 14]         589,824
     BatchNorm2d-134          [-1, 256, 14, 14]             512
            ReLU-135          [-1, 256, 14, 14]               0
      Conv2dAuto-136         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-137         [-1, 1024, 14, 14]           2,048
ResNetBottleNeckBlock-138         [-1, 1024, 14, 14]               0
      Conv2dAuto-139          [-1, 256, 14, 14]         262,144
     BatchNorm2d-140          [-1, 256, 14, 14]             512
            ReLU-141          [-1, 256, 14, 14]               0
      Conv2dAuto-142          [-1, 256, 14, 14]         589,824
     BatchNorm2d-143          [-1, 256, 14, 14]             512
            ReLU-144          [-1, 256, 14, 14]               0
      Conv2dAuto-145         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-146         [-1, 1024, 14, 14]           2,048
ResNetBottleNeckBlock-147         [-1, 1024, 14, 14]               0
      Conv2dAuto-148          [-1, 256, 14, 14]         262,144
     BatchNorm2d-149          [-1, 256, 14, 14]             512
            ReLU-150          [-1, 256, 14, 14]               0
      Conv2dAuto-151          [-1, 256, 14, 14]         589,824
     BatchNorm2d-152          [-1, 256, 14, 14]             512
            ReLU-153          [-1, 256, 14, 14]               0
      Conv2dAuto-154         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-155         [-1, 1024, 14, 14]           2,048
ResNetBottleNeckBlock-156         [-1, 1024, 14, 14]               0
      Conv2dAuto-157          [-1, 256, 14, 14]         262,144
     BatchNorm2d-158          [-1, 256, 14, 14]             512
            ReLU-159          [-1, 256, 14, 14]               0
      Conv2dAuto-160          [-1, 256, 14, 14]         589,824
     BatchNorm2d-161          [-1, 256, 14, 14]             512
            ReLU-162          [-1, 256, 14, 14]               0
      Conv2dAuto-163         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-164         [-1, 1024, 14, 14]           2,048
ResNetBottleNeckBlock-165         [-1, 1024, 14, 14]               0
      Conv2dAuto-166          [-1, 256, 14, 14]         262,144
     BatchNorm2d-167          [-1, 256, 14, 14]             512
            ReLU-168          [-1, 256, 14, 14]               0
      Conv2dAuto-169          [-1, 256, 14, 14]         589,824
     BatchNorm2d-170          [-1, 256, 14, 14]             512
            ReLU-171          [-1, 256, 14, 14]               0
      Conv2dAuto-172         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-173         [-1, 1024, 14, 14]           2,048
ResNetBottleNeckBlock-174         [-1, 1024, 14, 14]               0
      Conv2dAuto-175          [-1, 256, 14, 14]         262,144
     BatchNorm2d-176          [-1, 256, 14, 14]             512
            ReLU-177          [-1, 256, 14, 14]               0
      Conv2dAuto-178          [-1, 256, 14, 14]         589,824
     BatchNorm2d-179          [-1, 256, 14, 14]             512
            ReLU-180          [-1, 256, 14, 14]               0
      Conv2dAuto-181         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-182         [-1, 1024, 14, 14]           2,048
ResNetBottleNeckBlock-183         [-1, 1024, 14, 14]               0
      Conv2dAuto-184          [-1, 256, 14, 14]         262,144
     BatchNorm2d-185          [-1, 256, 14, 14]             512
            ReLU-186          [-1, 256, 14, 14]               0
      Conv2dAuto-187          [-1, 256, 14, 14]         589,824
     BatchNorm2d-188          [-1, 256, 14, 14]             512
            ReLU-189          [-1, 256, 14, 14]               0
      Conv2dAuto-190         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-191         [-1, 1024, 14, 14]           2,048
ResNetBottleNeckBlock-192         [-1, 1024, 14, 14]               0
      Conv2dAuto-193          [-1, 256, 14, 14]         262,144
     BatchNorm2d-194          [-1, 256, 14, 14]             512
            ReLU-195          [-1, 256, 14, 14]               0
      Conv2dAuto-196          [-1, 256, 14, 14]         589,824
     BatchNorm2d-197          [-1, 256, 14, 14]             512
            ReLU-198          [-1, 256, 14, 14]               0
      Conv2dAuto-199         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-200         [-1, 1024, 14, 14]           2,048
ResNetBottleNeckBlock-201         [-1, 1024, 14, 14]               0
      Conv2dAuto-202          [-1, 256, 14, 14]         262,144
     BatchNorm2d-203          [-1, 256, 14, 14]             512
            ReLU-204          [-1, 256, 14, 14]               0
      Conv2dAuto-205          [-1, 256, 14, 14]         589,824
     BatchNorm2d-206          [-1, 256, 14, 14]             512
            ReLU-207          [-1, 256, 14, 14]               0
      Conv2dAuto-208         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-209         [-1, 1024, 14, 14]           2,048
ResNetBottleNeckBlock-210         [-1, 1024, 14, 14]               0
      Conv2dAuto-211          [-1, 256, 14, 14]         262,144
     BatchNorm2d-212          [-1, 256, 14, 14]             512
            ReLU-213          [-1, 256, 14, 14]               0
      Conv2dAuto-214          [-1, 256, 14, 14]         589,824
     BatchNorm2d-215          [-1, 256, 14, 14]             512
            ReLU-216          [-1, 256, 14, 14]               0
      Conv2dAuto-217         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-218         [-1, 1024, 14, 14]           2,048
ResNetBottleNeckBlock-219         [-1, 1024, 14, 14]               0
      Conv2dAuto-220          [-1, 256, 14, 14]         262,144
     BatchNorm2d-221          [-1, 256, 14, 14]             512
            ReLU-222          [-1, 256, 14, 14]               0
      Conv2dAuto-223          [-1, 256, 14, 14]         589,824
     BatchNorm2d-224          [-1, 256, 14, 14]             512
            ReLU-225          [-1, 256, 14, 14]               0
      Conv2dAuto-226         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-227         [-1, 1024, 14, 14]           2,048
ResNetBottleNeckBlock-228         [-1, 1024, 14, 14]               0
      Conv2dAuto-229          [-1, 256, 14, 14]         262,144
     BatchNorm2d-230          [-1, 256, 14, 14]             512
            ReLU-231          [-1, 256, 14, 14]               0
      Conv2dAuto-232          [-1, 256, 14, 14]         589,824
     BatchNorm2d-233          [-1, 256, 14, 14]             512
            ReLU-234          [-1, 256, 14, 14]               0
      Conv2dAuto-235         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-236         [-1, 1024, 14, 14]           2,048
ResNetBottleNeckBlock-237         [-1, 1024, 14, 14]               0
      Conv2dAuto-238          [-1, 256, 14, 14]         262,144
     BatchNorm2d-239          [-1, 256, 14, 14]             512
            ReLU-240          [-1, 256, 14, 14]               0
      Conv2dAuto-241          [-1, 256, 14, 14]         589,824
     BatchNorm2d-242          [-1, 256, 14, 14]             512
            ReLU-243          [-1, 256, 14, 14]               0
      Conv2dAuto-244         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-245         [-1, 1024, 14, 14]           2,048
ResNetBottleNeckBlock-246         [-1, 1024, 14, 14]               0
      Conv2dAuto-247          [-1, 256, 14, 14]         262,144
     BatchNorm2d-248          [-1, 256, 14, 14]             512
            ReLU-249          [-1, 256, 14, 14]               0
      Conv2dAuto-250          [-1, 256, 14, 14]         589,824
     BatchNorm2d-251          [-1, 256, 14, 14]             512
            ReLU-252          [-1, 256, 14, 14]               0
      Conv2dAuto-253         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-254         [-1, 1024, 14, 14]           2,048
ResNetBottleNeckBlock-255         [-1, 1024, 14, 14]               0
      Conv2dAuto-256          [-1, 256, 14, 14]         262,144
     BatchNorm2d-257          [-1, 256, 14, 14]             512
            ReLU-258          [-1, 256, 14, 14]               0
      Conv2dAuto-259          [-1, 256, 14, 14]         589,824
     BatchNorm2d-260          [-1, 256, 14, 14]             512
            ReLU-261          [-1, 256, 14, 14]               0
      Conv2dAuto-262         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-263         [-1, 1024, 14, 14]           2,048
ResNetBottleNeckBlock-264         [-1, 1024, 14, 14]               0
      Conv2dAuto-265          [-1, 256, 14, 14]         262,144
     BatchNorm2d-266          [-1, 256, 14, 14]             512
            ReLU-267          [-1, 256, 14, 14]               0
      Conv2dAuto-268          [-1, 256, 14, 14]         589,824
     BatchNorm2d-269          [-1, 256, 14, 14]             512
            ReLU-270          [-1, 256, 14, 14]               0
      Conv2dAuto-271         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-272         [-1, 1024, 14, 14]           2,048
ResNetBottleNeckBlock-273         [-1, 1024, 14, 14]               0
      Conv2dAuto-274          [-1, 256, 14, 14]         262,144
     BatchNorm2d-275          [-1, 256, 14, 14]             512
            ReLU-276          [-1, 256, 14, 14]               0
      Conv2dAuto-277          [-1, 256, 14, 14]         589,824
     BatchNorm2d-278          [-1, 256, 14, 14]             512
            ReLU-279          [-1, 256, 14, 14]               0
      Conv2dAuto-280         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-281         [-1, 1024, 14, 14]           2,048
ResNetBottleNeckBlock-282         [-1, 1024, 14, 14]               0
     ResNetLayer-283         [-1, 1024, 14, 14]               0
          Conv2d-284           [-1, 2048, 7, 7]       2,097,152
     BatchNorm2d-285           [-1, 2048, 7, 7]           4,096
      Conv2dAuto-286          [-1, 512, 14, 14]         524,288
     BatchNorm2d-287          [-1, 512, 14, 14]           1,024
            ReLU-288          [-1, 512, 14, 14]               0
      Conv2dAuto-289            [-1, 512, 7, 7]       2,359,296
     BatchNorm2d-290            [-1, 512, 7, 7]           1,024
            ReLU-291            [-1, 512, 7, 7]               0
      Conv2dAuto-292           [-1, 2048, 7, 7]       1,048,576
     BatchNorm2d-293           [-1, 2048, 7, 7]           4,096
ResNetBottleNeckBlock-294           [-1, 2048, 7, 7]               0
      Conv2dAuto-295            [-1, 512, 7, 7]       1,048,576
     BatchNorm2d-296            [-1, 512, 7, 7]           1,024
            ReLU-297            [-1, 512, 7, 7]               0
      Conv2dAuto-298            [-1, 512, 7, 7]       2,359,296
     BatchNorm2d-299            [-1, 512, 7, 7]           1,024
            ReLU-300            [-1, 512, 7, 7]               0
      Conv2dAuto-301           [-1, 2048, 7, 7]       1,048,576
     BatchNorm2d-302           [-1, 2048, 7, 7]           4,096
ResNetBottleNeckBlock-303           [-1, 2048, 7, 7]               0
      Conv2dAuto-304            [-1, 512, 7, 7]       1,048,576
     BatchNorm2d-305            [-1, 512, 7, 7]           1,024
            ReLU-306            [-1, 512, 7, 7]               0
      Conv2dAuto-307            [-1, 512, 7, 7]       2,359,296
     BatchNorm2d-308            [-1, 512, 7, 7]           1,024
            ReLU-309            [-1, 512, 7, 7]               0
      Conv2dAuto-310           [-1, 2048, 7, 7]       1,048,576
     BatchNorm2d-311           [-1, 2048, 7, 7]           4,096
ResNetBottleNeckBlock-312           [-1, 2048, 7, 7]               0
     ResNetLayer-313           [-1, 2048, 7, 7]               0
   ResNetEncoder-314           [-1, 2048, 7, 7]               0
AdaptiveAvgPool2d-315           [-1, 2048, 1, 1]               0
          Linear-316                 [-1, 1000]       2,049,000
   ResnetDecoder-317                 [-1, 1000]               0
================================================================
Total params: 44,549,160
Trainable params: 44,549,160
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 373.85
Params size (MB): 169.94
Estimated Total Size (MB): 544.36
----------------------------------------------------------------
import torchvision.models as models

# resnet101(False)

summary(models.resnet101(False).cuda(), (3, 224, 224))
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 64, 112, 112]           9,408
       BatchNorm2d-2         [-1, 64, 112, 112]             128
              ReLU-3         [-1, 64, 112, 112]               0
         MaxPool2d-4           [-1, 64, 56, 56]               0
            Conv2d-5           [-1, 64, 56, 56]           4,096
       BatchNorm2d-6           [-1, 64, 56, 56]             128
              ReLU-7           [-1, 64, 56, 56]               0
            Conv2d-8           [-1, 64, 56, 56]          36,864
       BatchNorm2d-9           [-1, 64, 56, 56]             128
             ReLU-10           [-1, 64, 56, 56]               0
           Conv2d-11          [-1, 256, 56, 56]          16,384
      BatchNorm2d-12          [-1, 256, 56, 56]             512
           Conv2d-13          [-1, 256, 56, 56]          16,384
      BatchNorm2d-14          [-1, 256, 56, 56]             512
             ReLU-15          [-1, 256, 56, 56]               0
       Bottleneck-16          [-1, 256, 56, 56]               0
           Conv2d-17           [-1, 64, 56, 56]          16,384
      BatchNorm2d-18           [-1, 64, 56, 56]             128
             ReLU-19           [-1, 64, 56, 56]               0
           Conv2d-20           [-1, 64, 56, 56]          36,864
      BatchNorm2d-21           [-1, 64, 56, 56]             128
             ReLU-22           [-1, 64, 56, 56]               0
           Conv2d-23          [-1, 256, 56, 56]          16,384
      BatchNorm2d-24          [-1, 256, 56, 56]             512
             ReLU-25          [-1, 256, 56, 56]               0
       Bottleneck-26          [-1, 256, 56, 56]               0
           Conv2d-27           [-1, 64, 56, 56]          16,384
      BatchNorm2d-28           [-1, 64, 56, 56]             128
             ReLU-29           [-1, 64, 56, 56]               0
           Conv2d-30           [-1, 64, 56, 56]          36,864
      BatchNorm2d-31           [-1, 64, 56, 56]             128
             ReLU-32           [-1, 64, 56, 56]               0
           Conv2d-33          [-1, 256, 56, 56]          16,384
      BatchNorm2d-34          [-1, 256, 56, 56]             512
             ReLU-35          [-1, 256, 56, 56]               0
       Bottleneck-36          [-1, 256, 56, 56]               0
           Conv2d-37          [-1, 128, 56, 56]          32,768
      BatchNorm2d-38          [-1, 128, 56, 56]             256
             ReLU-39          [-1, 128, 56, 56]               0
           Conv2d-40          [-1, 128, 28, 28]         147,456
      BatchNorm2d-41          [-1, 128, 28, 28]             256
             ReLU-42          [-1, 128, 28, 28]               0
           Conv2d-43          [-1, 512, 28, 28]          65,536
      BatchNorm2d-44          [-1, 512, 28, 28]           1,024
           Conv2d-45          [-1, 512, 28, 28]         131,072
      BatchNorm2d-46          [-1, 512, 28, 28]           1,024
             ReLU-47          [-1, 512, 28, 28]               0
       Bottleneck-48          [-1, 512, 28, 28]               0
           Conv2d-49          [-1, 128, 28, 28]          65,536
      BatchNorm2d-50          [-1, 128, 28, 28]             256
             ReLU-51          [-1, 128, 28, 28]               0
           Conv2d-52          [-1, 128, 28, 28]         147,456
      BatchNorm2d-53          [-1, 128, 28, 28]             256
             ReLU-54          [-1, 128, 28, 28]               0
           Conv2d-55          [-1, 512, 28, 28]          65,536
      BatchNorm2d-56          [-1, 512, 28, 28]           1,024
             ReLU-57          [-1, 512, 28, 28]               0
       Bottleneck-58          [-1, 512, 28, 28]               0
           Conv2d-59          [-1, 128, 28, 28]          65,536
      BatchNorm2d-60          [-1, 128, 28, 28]             256
             ReLU-61          [-1, 128, 28, 28]               0
           Conv2d-62          [-1, 128, 28, 28]         147,456
      BatchNorm2d-63          [-1, 128, 28, 28]             256
             ReLU-64          [-1, 128, 28, 28]               0
           Conv2d-65          [-1, 512, 28, 28]          65,536
      BatchNorm2d-66          [-1, 512, 28, 28]           1,024
             ReLU-67          [-1, 512, 28, 28]               0
       Bottleneck-68          [-1, 512, 28, 28]               0
           Conv2d-69          [-1, 128, 28, 28]          65,536
      BatchNorm2d-70          [-1, 128, 28, 28]             256
             ReLU-71          [-1, 128, 28, 28]               0
           Conv2d-72          [-1, 128, 28, 28]         147,456
      BatchNorm2d-73          [-1, 128, 28, 28]             256
             ReLU-74          [-1, 128, 28, 28]               0
           Conv2d-75          [-1, 512, 28, 28]          65,536
      BatchNorm2d-76          [-1, 512, 28, 28]           1,024
             ReLU-77          [-1, 512, 28, 28]               0
       Bottleneck-78          [-1, 512, 28, 28]               0
           Conv2d-79          [-1, 256, 28, 28]         131,072
      BatchNorm2d-80          [-1, 256, 28, 28]             512
             ReLU-81          [-1, 256, 28, 28]               0
           Conv2d-82          [-1, 256, 14, 14]         589,824
      BatchNorm2d-83          [-1, 256, 14, 14]             512
             ReLU-84          [-1, 256, 14, 14]               0
           Conv2d-85         [-1, 1024, 14, 14]         262,144
      BatchNorm2d-86         [-1, 1024, 14, 14]           2,048
           Conv2d-87         [-1, 1024, 14, 14]         524,288
      BatchNorm2d-88         [-1, 1024, 14, 14]           2,048
             ReLU-89         [-1, 1024, 14, 14]               0
       Bottleneck-90         [-1, 1024, 14, 14]               0
           Conv2d-91          [-1, 256, 14, 14]         262,144
      BatchNorm2d-92          [-1, 256, 14, 14]             512
             ReLU-93          [-1, 256, 14, 14]               0
           Conv2d-94          [-1, 256, 14, 14]         589,824
      BatchNorm2d-95          [-1, 256, 14, 14]             512
             ReLU-96          [-1, 256, 14, 14]               0
           Conv2d-97         [-1, 1024, 14, 14]         262,144
      BatchNorm2d-98         [-1, 1024, 14, 14]           2,048
             ReLU-99         [-1, 1024, 14, 14]               0
      Bottleneck-100         [-1, 1024, 14, 14]               0
          Conv2d-101          [-1, 256, 14, 14]         262,144
     BatchNorm2d-102          [-1, 256, 14, 14]             512
            ReLU-103          [-1, 256, 14, 14]               0
          Conv2d-104          [-1, 256, 14, 14]         589,824
     BatchNorm2d-105          [-1, 256, 14, 14]             512
            ReLU-106          [-1, 256, 14, 14]               0
          Conv2d-107         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-108         [-1, 1024, 14, 14]           2,048
            ReLU-109         [-1, 1024, 14, 14]               0
      Bottleneck-110         [-1, 1024, 14, 14]               0
          Conv2d-111          [-1, 256, 14, 14]         262,144
     BatchNorm2d-112          [-1, 256, 14, 14]             512
            ReLU-113          [-1, 256, 14, 14]               0
          Conv2d-114          [-1, 256, 14, 14]         589,824
     BatchNorm2d-115          [-1, 256, 14, 14]             512
            ReLU-116          [-1, 256, 14, 14]               0
          Conv2d-117         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-118         [-1, 1024, 14, 14]           2,048
            ReLU-119         [-1, 1024, 14, 14]               0
      Bottleneck-120         [-1, 1024, 14, 14]               0
          Conv2d-121          [-1, 256, 14, 14]         262,144
     BatchNorm2d-122          [-1, 256, 14, 14]             512
            ReLU-123          [-1, 256, 14, 14]               0
          Conv2d-124          [-1, 256, 14, 14]         589,824
     BatchNorm2d-125          [-1, 256, 14, 14]             512
            ReLU-126          [-1, 256, 14, 14]               0
          Conv2d-127         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-128         [-1, 1024, 14, 14]           2,048
            ReLU-129         [-1, 1024, 14, 14]               0
      Bottleneck-130         [-1, 1024, 14, 14]               0
          Conv2d-131          [-1, 256, 14, 14]         262,144
     BatchNorm2d-132          [-1, 256, 14, 14]             512
            ReLU-133          [-1, 256, 14, 14]               0
          Conv2d-134          [-1, 256, 14, 14]         589,824
     BatchNorm2d-135          [-1, 256, 14, 14]             512
            ReLU-136          [-1, 256, 14, 14]               0
          Conv2d-137         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-138         [-1, 1024, 14, 14]           2,048
            ReLU-139         [-1, 1024, 14, 14]               0
      Bottleneck-140         [-1, 1024, 14, 14]               0
          Conv2d-141          [-1, 256, 14, 14]         262,144
     BatchNorm2d-142          [-1, 256, 14, 14]             512
            ReLU-143          [-1, 256, 14, 14]               0
          Conv2d-144          [-1, 256, 14, 14]         589,824
     BatchNorm2d-145          [-1, 256, 14, 14]             512
            ReLU-146          [-1, 256, 14, 14]               0
          Conv2d-147         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-148         [-1, 1024, 14, 14]           2,048
            ReLU-149         [-1, 1024, 14, 14]               0
      Bottleneck-150         [-1, 1024, 14, 14]               0
          Conv2d-151          [-1, 256, 14, 14]         262,144
     BatchNorm2d-152          [-1, 256, 14, 14]             512
            ReLU-153          [-1, 256, 14, 14]               0
          Conv2d-154          [-1, 256, 14, 14]         589,824
     BatchNorm2d-155          [-1, 256, 14, 14]             512
            ReLU-156          [-1, 256, 14, 14]               0
          Conv2d-157         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-158         [-1, 1024, 14, 14]           2,048
            ReLU-159         [-1, 1024, 14, 14]               0
      Bottleneck-160         [-1, 1024, 14, 14]               0
          Conv2d-161          [-1, 256, 14, 14]         262,144
     BatchNorm2d-162          [-1, 256, 14, 14]             512
            ReLU-163          [-1, 256, 14, 14]               0
          Conv2d-164          [-1, 256, 14, 14]         589,824
     BatchNorm2d-165          [-1, 256, 14, 14]             512
            ReLU-166          [-1, 256, 14, 14]               0
          Conv2d-167         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-168         [-1, 1024, 14, 14]           2,048
            ReLU-169         [-1, 1024, 14, 14]               0
      Bottleneck-170         [-1, 1024, 14, 14]               0
          Conv2d-171          [-1, 256, 14, 14]         262,144
     BatchNorm2d-172          [-1, 256, 14, 14]             512
            ReLU-173          [-1, 256, 14, 14]               0
          Conv2d-174          [-1, 256, 14, 14]         589,824
     BatchNorm2d-175          [-1, 256, 14, 14]             512
            ReLU-176          [-1, 256, 14, 14]               0
          Conv2d-177         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-178         [-1, 1024, 14, 14]           2,048
            ReLU-179         [-1, 1024, 14, 14]               0
      Bottleneck-180         [-1, 1024, 14, 14]               0
          Conv2d-181          [-1, 256, 14, 14]         262,144
     BatchNorm2d-182          [-1, 256, 14, 14]             512
            ReLU-183          [-1, 256, 14, 14]               0
          Conv2d-184          [-1, 256, 14, 14]         589,824
     BatchNorm2d-185          [-1, 256, 14, 14]             512
            ReLU-186          [-1, 256, 14, 14]               0
          Conv2d-187         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-188         [-1, 1024, 14, 14]           2,048
            ReLU-189         [-1, 1024, 14, 14]               0
      Bottleneck-190         [-1, 1024, 14, 14]               0
          Conv2d-191          [-1, 256, 14, 14]         262,144
     BatchNorm2d-192          [-1, 256, 14, 14]             512
            ReLU-193          [-1, 256, 14, 14]               0
          Conv2d-194          [-1, 256, 14, 14]         589,824
     BatchNorm2d-195          [-1, 256, 14, 14]             512
            ReLU-196          [-1, 256, 14, 14]               0
          Conv2d-197         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-198         [-1, 1024, 14, 14]           2,048
            ReLU-199         [-1, 1024, 14, 14]               0
      Bottleneck-200         [-1, 1024, 14, 14]               0
          Conv2d-201          [-1, 256, 14, 14]         262,144
     BatchNorm2d-202          [-1, 256, 14, 14]             512
            ReLU-203          [-1, 256, 14, 14]               0
          Conv2d-204          [-1, 256, 14, 14]         589,824
     BatchNorm2d-205          [-1, 256, 14, 14]             512
            ReLU-206          [-1, 256, 14, 14]               0
          Conv2d-207         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-208         [-1, 1024, 14, 14]           2,048
            ReLU-209         [-1, 1024, 14, 14]               0
      Bottleneck-210         [-1, 1024, 14, 14]               0
          Conv2d-211          [-1, 256, 14, 14]         262,144
     BatchNorm2d-212          [-1, 256, 14, 14]             512
            ReLU-213          [-1, 256, 14, 14]               0
          Conv2d-214          [-1, 256, 14, 14]         589,824
     BatchNorm2d-215          [-1, 256, 14, 14]             512
            ReLU-216          [-1, 256, 14, 14]               0
          Conv2d-217         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-218         [-1, 1024, 14, 14]           2,048
            ReLU-219         [-1, 1024, 14, 14]               0
      Bottleneck-220         [-1, 1024, 14, 14]               0
          Conv2d-221          [-1, 256, 14, 14]         262,144
     BatchNorm2d-222          [-1, 256, 14, 14]             512
            ReLU-223          [-1, 256, 14, 14]               0
          Conv2d-224          [-1, 256, 14, 14]         589,824
     BatchNorm2d-225          [-1, 256, 14, 14]             512
            ReLU-226          [-1, 256, 14, 14]               0
          Conv2d-227         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-228         [-1, 1024, 14, 14]           2,048
            ReLU-229         [-1, 1024, 14, 14]               0
      Bottleneck-230         [-1, 1024, 14, 14]               0
          Conv2d-231          [-1, 256, 14, 14]         262,144
     BatchNorm2d-232          [-1, 256, 14, 14]             512
            ReLU-233          [-1, 256, 14, 14]               0
          Conv2d-234          [-1, 256, 14, 14]         589,824
     BatchNorm2d-235          [-1, 256, 14, 14]             512
            ReLU-236          [-1, 256, 14, 14]               0
          Conv2d-237         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-238         [-1, 1024, 14, 14]           2,048
            ReLU-239         [-1, 1024, 14, 14]               0
      Bottleneck-240         [-1, 1024, 14, 14]               0
          Conv2d-241          [-1, 256, 14, 14]         262,144
     BatchNorm2d-242          [-1, 256, 14, 14]             512
            ReLU-243          [-1, 256, 14, 14]               0
          Conv2d-244          [-1, 256, 14, 14]         589,824
     BatchNorm2d-245          [-1, 256, 14, 14]             512
            ReLU-246          [-1, 256, 14, 14]               0
          Conv2d-247         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-248         [-1, 1024, 14, 14]           2,048
            ReLU-249         [-1, 1024, 14, 14]               0
      Bottleneck-250         [-1, 1024, 14, 14]               0
          Conv2d-251          [-1, 256, 14, 14]         262,144
     BatchNorm2d-252          [-1, 256, 14, 14]             512
            ReLU-253          [-1, 256, 14, 14]               0
          Conv2d-254          [-1, 256, 14, 14]         589,824
     BatchNorm2d-255          [-1, 256, 14, 14]             512
            ReLU-256          [-1, 256, 14, 14]               0
          Conv2d-257         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-258         [-1, 1024, 14, 14]           2,048
            ReLU-259         [-1, 1024, 14, 14]               0
      Bottleneck-260         [-1, 1024, 14, 14]               0
          Conv2d-261          [-1, 256, 14, 14]         262,144
     BatchNorm2d-262          [-1, 256, 14, 14]             512
            ReLU-263          [-1, 256, 14, 14]               0
          Conv2d-264          [-1, 256, 14, 14]         589,824
     BatchNorm2d-265          [-1, 256, 14, 14]             512
            ReLU-266          [-1, 256, 14, 14]               0
          Conv2d-267         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-268         [-1, 1024, 14, 14]           2,048
            ReLU-269         [-1, 1024, 14, 14]               0
      Bottleneck-270         [-1, 1024, 14, 14]               0
          Conv2d-271          [-1, 256, 14, 14]         262,144
     BatchNorm2d-272          [-1, 256, 14, 14]             512
            ReLU-273          [-1, 256, 14, 14]               0
          Conv2d-274          [-1, 256, 14, 14]         589,824
     BatchNorm2d-275          [-1, 256, 14, 14]             512
            ReLU-276          [-1, 256, 14, 14]               0
          Conv2d-277         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-278         [-1, 1024, 14, 14]           2,048
            ReLU-279         [-1, 1024, 14, 14]               0
      Bottleneck-280         [-1, 1024, 14, 14]               0
          Conv2d-281          [-1, 256, 14, 14]         262,144
     BatchNorm2d-282          [-1, 256, 14, 14]             512
            ReLU-283          [-1, 256, 14, 14]               0
          Conv2d-284          [-1, 256, 14, 14]         589,824
     BatchNorm2d-285          [-1, 256, 14, 14]             512
            ReLU-286          [-1, 256, 14, 14]               0
          Conv2d-287         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-288         [-1, 1024, 14, 14]           2,048
            ReLU-289         [-1, 1024, 14, 14]               0
      Bottleneck-290         [-1, 1024, 14, 14]               0
          Conv2d-291          [-1, 256, 14, 14]         262,144
     BatchNorm2d-292          [-1, 256, 14, 14]             512
            ReLU-293          [-1, 256, 14, 14]               0
          Conv2d-294          [-1, 256, 14, 14]         589,824
     BatchNorm2d-295          [-1, 256, 14, 14]             512
            ReLU-296          [-1, 256, 14, 14]               0
          Conv2d-297         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-298         [-1, 1024, 14, 14]           2,048
            ReLU-299         [-1, 1024, 14, 14]               0
      Bottleneck-300         [-1, 1024, 14, 14]               0
          Conv2d-301          [-1, 256, 14, 14]         262,144
     BatchNorm2d-302          [-1, 256, 14, 14]             512
            ReLU-303          [-1, 256, 14, 14]               0
          Conv2d-304          [-1, 256, 14, 14]         589,824
     BatchNorm2d-305          [-1, 256, 14, 14]             512
            ReLU-306          [-1, 256, 14, 14]               0
          Conv2d-307         [-1, 1024, 14, 14]         262,144
     BatchNorm2d-308         [-1, 1024, 14, 14]           2,048
            ReLU-309         [-1, 1024, 14, 14]               0
      Bottleneck-310         [-1, 1024, 14, 14]               0
          Conv2d-311          [-1, 512, 14, 14]         524,288
     BatchNorm2d-312          [-1, 512, 14, 14]           1,024
            ReLU-313          [-1, 512, 14, 14]               0
          Conv2d-314            [-1, 512, 7, 7]       2,359,296
     BatchNorm2d-315            [-1, 512, 7, 7]           1,024
            ReLU-316            [-1, 512, 7, 7]               0
          Conv2d-317           [-1, 2048, 7, 7]       1,048,576
     BatchNorm2d-318           [-1, 2048, 7, 7]           4,096
          Conv2d-319           [-1, 2048, 7, 7]       2,097,152
     BatchNorm2d-320           [-1, 2048, 7, 7]           4,096
            ReLU-321           [-1, 2048, 7, 7]               0
      Bottleneck-322           [-1, 2048, 7, 7]               0
          Conv2d-323            [-1, 512, 7, 7]       1,048,576
     BatchNorm2d-324            [-1, 512, 7, 7]           1,024
            ReLU-325            [-1, 512, 7, 7]               0
          Conv2d-326            [-1, 512, 7, 7]       2,359,296
     BatchNorm2d-327            [-1, 512, 7, 7]           1,024
            ReLU-328            [-1, 512, 7, 7]               0
          Conv2d-329           [-1, 2048, 7, 7]       1,048,576
     BatchNorm2d-330           [-1, 2048, 7, 7]           4,096
            ReLU-331           [-1, 2048, 7, 7]               0
      Bottleneck-332           [-1, 2048, 7, 7]               0
          Conv2d-333            [-1, 512, 7, 7]       1,048,576
     BatchNorm2d-334            [-1, 512, 7, 7]           1,024
            ReLU-335            [-1, 512, 7, 7]               0
          Conv2d-336            [-1, 512, 7, 7]       2,359,296
     BatchNorm2d-337            [-1, 512, 7, 7]           1,024
            ReLU-338            [-1, 512, 7, 7]               0
          Conv2d-339           [-1, 2048, 7, 7]       1,048,576
     BatchNorm2d-340           [-1, 2048, 7, 7]           4,096
            ReLU-341           [-1, 2048, 7, 7]               0
      Bottleneck-342           [-1, 2048, 7, 7]               0
AdaptiveAvgPool2d-343           [-1, 2048, 1, 1]               0
          Linear-344                 [-1, 1000]       2,049,000
================================================================
Total params: 44,549,160
Trainable params: 44,549,160
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 429.73
Params size (MB): 169.94
Estimated Total Size (MB): 600.25
----------------------------------------------------------------

About

Clean, scalable and easy to use ResNet implementation in Pytorch

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%