Ibrahim Zughayyar, Martin Bauer, Christopher Güttler, Ana Luísa Marcelino, Fabienne Kühne, Claudia Buss, Christine Heim, Annette Aigner,
Anna Tietze, and Andrea Dell'Orco
(2024, September 9).
A FastSurfer Database for Age-Specific Brain Volumes in Healthy Children:
A Tool for Quantifying Localized and Global Brain Volume Alterations in Pediatric Patients.
https://doi.org/10.31219/osf.io/dw7p4
https://osf.io/kj7hy/
git clone https://github.com/ibrazug/kinderseg.git
cd kinderseg/Docker
cp </path/to/your/license.txt> .
docker build -t kinderseg .
docker run --gpus all --rm \
-v <nifti_data>:/data \
-v <output_dir>:/output \
kinderseg \
--age <age> \
--threads <threads, optional, default=4>
nifti_data
can be either a directory containing NIfTI files or a single NIfTI file. The output will be saved in the output
directory in a subdirectory named after the input NIfTI file, without the extension. Example:
docker run --gpus all --rm \
-v $PWD/sub-001/ses-01/anat/sub-001_ses-01_T1w.nii.gz:/data/sub-001_ses-01_T1w.nii.gz \
-v ./output:/output \
kinderseg --age 12
git clone https://github.com/ibrazug/kinderseg.git
cd kinderseg/Docker
cp </path/to/your/license.txt> .
docker build -t kinderseg .
apptainer build kinderseg.sif docker-daemon://kinderseg:latest
apptainer run --nv kinderseg.sif \
-B <nifti_data>:/data \
-B <output_dir>:/output \
--age <age> \
--threads <threads>
- At least 5 GB of RAM
- GPU (optional, but recommended)
- a valid FreeSurfer license: you can get one for free by clicking here.
To run the ShinyApp locally, follow these steps:
- Ensure you have R Studio installed on your machine. Recommended version: RStudio 2023.06.2 Build 561.
- Download this repository by clicking here.
- Navigate to the
shinyapp
folder within the downloaded repository. - Open
app.R
using R Studio. - Install the shiny package by running
install.packages("shiny")
in the R console if you haven't already. - Run the App by clicking on the
Run App
button in R Studio.
This will start the ShinyApp locally on your machine.
Dataset | N° in total | Ex (QC) | N° after QC | Ex (SC) | N° after SC |
---|---|---|---|---|---|
HBN | 170 | 25 | 145 | 3 | 142 |
LOC | 125 | 20 | 105 | 7 | 98 |
Kids2Health | 211 | 7 | 204 | 3 | 201 |
Total | 506 | 52 | 454 | 13 | 441 |
- DICOM data converted to NIfTI format using
dcm2niix
and Python version 3.9 was used for data manipulation
-
FreeSurfer v6.0: Ran on a Slurm cluster with a 16-core Intel Xeon E5-2650 CPU, Utilized GNU Parallel for parallel processing
-
FastSurfer (V1): Utilized FastSurferCNN pipeline on a workstation with an AMD 3970X CPU and NVIDIA GeForce RTX 3090 GPU
01.generate_segmentation_outputs (freesurfer and fastsurfer).ipynb
for MRI data segmentation and volume calculation using Freesurfer and Fastsurfer, generating volumetric statistics tables for both methods02.SumROIs (masks and volumes).ipynb
defining and summing volumes for predefined ROIs, and saving the results in CSV filesPython_environment.yml
Python env
- R version 4.1.2 used for analysis
- Libraries: ggplot2, tidyverse, viridis (R)
DSC_RVD.ipynb
showing how we calculated DSC and RVD values and how the figures were generatedHAI.ipynb
showing how HAI values were calculated for FastSurfer and FreeSurfer outputssanity_check_plot
Comparison to findings in the study by Bethlehem et al. (2022)ICC_and_mean_volumes
ICC Agreement Calculation and mean Volumes for each ROI.Percetilcurves_LR
Established using FastSurfer for the entire databaseR_environment
R env