Skip to content

Commit

Permalink
Add an experimental interface for customizing DCE behavior.
Browse files Browse the repository at this point in the history
We use dead code elimination (DCE) throughout JAX core to remove unused computations from Jaxprs. This typically works transparently when we're just using `lax` primitives, but opaque calls to `pallas_call` or `ffi_call` can't be cleaned up this way. For many kernels however, the author will know how to generate a more efficient call for specific patterns of used outputs, so it is useful to provide a mechanism for customizing this behavior.

In #22735, I attempted to automatically tackle one specific example of this that comes up frequently, but there have been feature requests for a more general API. This version is bare bones and probably rough around the edges, but it could be a useful starting point for iteration.

PiperOrigin-RevId: 716596154
  • Loading branch information
dfm authored and Google-ML-Automation committed Jan 19, 2025
1 parent cc38d8c commit 370ade2
Show file tree
Hide file tree
Showing 7 changed files with 574 additions and 14 deletions.
1 change: 1 addition & 0 deletions jax/BUILD
Original file line number Diff line number Diff line change
Expand Up @@ -199,6 +199,7 @@ py_library_providing_imports_info(
"_src/callback.py",
"_src/checkify.py",
"_src/custom_batching.py",
"_src/custom_dce.py",
"_src/custom_derivatives.py",
"_src/custom_partitioning.py",
"_src/custom_partitioning_sharding_rule.py",
Expand Down
12 changes: 12 additions & 0 deletions jax/_src/api_util.py
Original file line number Diff line number Diff line change
Expand Up @@ -240,6 +240,18 @@ def argnums_partial(f, dyn_argnums, args, require_static_args_hashable=True):
dyn_args = tuple(args[i] for i in dyn_argnums)
return _argnums_partial(f, dyn_argnums, tuple(fixed_args)), dyn_args


def prepend_static_args(f, static_args):
return _prepend_static_args(f, tuple(Unhashable(arg) for arg in static_args))


@lu.transformation2
def _prepend_static_args(f, static_args, *args, **kwargs):
static_args = tuple(arg.val for arg in static_args)
all_args = static_args + args
return f(*all_args, **kwargs)


def _ensure_inbounds(allow_invalid: bool, num_args: int, argnums: Sequence[int]
) -> tuple[int, ...]:
"""Ensure argnum is within bounds. Also resolves negative argnums."""
Expand Down
358 changes: 358 additions & 0 deletions jax/_src/custom_dce.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,358 @@
# Copyright 2025 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections.abc import Callable, Sequence
import functools
from typing import Any

from jax._src import api_util
from jax._src import core
from jax._src import custom_api_util
from jax._src import errors
from jax._src import linear_util as lu
from jax._src import source_info_util
from jax._src import traceback_util
from jax._src import tree_util
from jax._src import util
from jax._src.interpreters import ad
from jax._src.interpreters import batching
from jax._src.interpreters import mlir
from jax._src.interpreters import partial_eval as pe

source_info_util.register_exclusion(__file__)
traceback_util.register_exclusion(__file__)

map, unsafe_map = util.safe_map, map
zip, unsafe_zip = util.safe_zip, zip


@custom_api_util.register_custom_decorator_type
class custom_dce:
"""Customize the DCE behavior of a JAX-transformable function.
JAX uses dead code elimination (DCE) to remove unused computations from a
JAX program. This typically works transparently when the program is
completely specified by known JAX operations, but opaque kernels like calls
to :py:func:`~jax.experimental.pallas.pallas_call` or
:py:func:`~jax.ffi.ffi_call`, for example, may cause problems.
This decorator allows users to customize the DCE behavior of a function by
defining a custom DCE rule. For a ``custom_dce`` wrapped function
``f(*args)``, the signature of the DCE rule is ``dce_rule(used_outs, *args)``
where ``used_outs`` is a Pytree with the same structure as the output of
``f``, and each leaf is is a ``bool`` indicating which outputs should
be computed. The remaining arguments ``*args`` are the original arguments to
``f``. The rule ``dce_rule`` should return a Pytree with only the outputs
that were flagged as used in ``used_outs``.
For example::
>>> @jax.experimental.custom_dce.custom_dce
... def f(x, y):
... return jnp.sin(x) * y, x * jnp.sin(y)
...
>>> @f.def_dce
... def f_dce_rule(used_outs, x, y):
... outs = []
... if used_outs[0]:
... outs.append(jnp.sin(x) * y)
... if used_outs[1]:
... outs.append(x * jnp.sin(y))
... return outs
In this example, ``used_outs`` is a ``tuple`` with two ``bool``s indicating
which outputs are required. The DCE rule returns only the required
outputs.
If the ``static_argnums`` argument is provided to ``custom_dce``, the
indicated arguments are treated as static when the function is traced, and
they will be moved to the front when calling the DCE rule. For example, if
``fun`` takes 2 arguments ``fun(x, y)``, and ``static_argnums`` is ``(1,)``,
then the DCE rule will be called as ``dce_rule(y, used_outs, x)``.
"""

fun: Callable[..., Any]
static_argnums: Sequence[int]
dce_rule: Callable[..., Any] | None

def __init__(
self, fun: Callable[..., Any], *, static_argnums: Sequence[int] = ()
):
functools.update_wrapper(self, fun)
self.fun = fun
self.static_argnums = static_argnums
self.dce_rule = None

__getattr__ = custom_api_util.forward_attr

def def_dce(
self,
dce_rule: Callable[..., Any],
) -> Callable[..., Any]:
"""Define a custom DCE rule for this function.
Args:
dce_rule: A function that takes (a) any arguments indicated as static
using ``static_argnums``, (b) a Pytree of ``bool``s (``used_outs``)
indicating which outputs should be computed, and (c) the rest of the
(non-static) arguments to the original function. The rule should return
a Pytree with only the outputs that were flagged as used in
``used_outs``.
"""
self.dce_rule = dce_rule
return dce_rule

@traceback_util.api_boundary
def __call__(self, *args, **kwargs):
fun_name = util.fun_name(self.fun)
if self.dce_rule is None:
raise AttributeError(
f"No DCE rule defined for custom_dce function {fun_name} using "
"def_dce."
)
rule_name = util.fun_name(self.dce_rule)
args = api_util.resolve_kwargs(self.fun, args, kwargs)
if self.static_argnums:
static_argnums = set(self.static_argnums)
for i in static_argnums:
check_for_tracers(args[i])
dyn_argnums = [i for i in range(len(args)) if i not in static_argnums]
fun, dyn_args = api_util.argnums_partial(
lu.wrap_init(self.fun),
dyn_argnums,
args,
require_static_args_hashable=False,
)
static_args = [args[i] for i in self.static_argnums]
dce_rule = api_util.prepend_static_args(
lu.wrap_init(self.dce_rule), static_args
)
else:
fun = lu.wrap_init(self.fun)
dce_rule = lu.wrap_init(self.dce_rule)
dyn_args = args

args_flat, in_tree = tree_util.tree_flatten(dyn_args)
flat_fun, out_tree = api_util.flatten_fun_nokwargs(fun, in_tree)
in_avals = [core.get_aval(x) for x in args_flat]

@pe._memoize
def dce_jaxpr_thunk(*used_outs: bool):
for store in dce_rule.stores:
if store:
store.reset()
flat_rule, rule_out_tree = flatten_dce_rule(
dce_rule, fun_name, rule_name, used_outs, in_tree, out_tree()
)
assert self.dce_rule is not None
debug = pe.tracing_debug_info(
self.dce_rule, in_tree, rule_out_tree, False, "custom_dce_rule"
)
dce_jaxpr, _, consts, () = pe.trace_to_jaxpr_dynamic(
flat_rule, in_avals, debug
)
# TODO(danfm): add support for consts.
assert not consts

# This second round of DCE is used to work out which inputs are actually
# referenced by the DCEed Jaxpr. To avoid infinite recursion when the DCE
# rule calls back into the primal, we replace all custom_dce primitives
# with a sentinel primitive with a no-op DCE rule.
dce_jaxpr = swap_primitives(dce_jaxpr, custom_dce_p, dce_sential_p)
dce_jaxpr, used_ins = pe.dce_jaxpr(
dce_jaxpr, [True] * len(dce_jaxpr.outvars)
)
dce_jaxpr = swap_primitives(dce_jaxpr, dce_sential_p, custom_dce_p)

return pe.close_jaxpr(dce_jaxpr), used_ins

debug = pe.tracing_debug_info(
self.fun, in_tree, out_tree, False, "custom_dce"
)
jaxpr, _, consts, () = pe.trace_to_jaxpr_dynamic(flat_fun, in_avals, debug)
# TODO(danfm): add support for consts.
assert not consts
closed_call = pe.close_jaxpr(jaxpr)
out_flat = custom_dce_p.bind(
*args_flat, fun_jaxpr=closed_call, dce_jaxpr_thunk=dce_jaxpr_thunk
)
return tree_util.tree_unflatten(out_tree(), out_flat)


def check_for_tracers(x):
# TODO(danfm): de-duplicate this with the version in custom_derivatives
for leaf in tree_util.tree_leaves(x):
if isinstance(leaf, core.Tracer):
msg = (
"Found a JAX Tracer object passed as an argument to a custom_dce "
"function in a position indicated by static_argnums as static. "
"Tracers cannot be passed as static arguments to custom_dce "
"functions; instead, static_argnums should only be used for "
"arguments that can't be or contain JAX tracers, e.g. "
"function-valued arguments. In particular, array-valued arguments "
"should typically not be indicated as static_argnums."
)
raise errors.UnexpectedTracerError(msg)


@lu.transformation_with_aux2
def flatten_dce_rule(
f, store, fun_name, rule_name, used_outs, in_tree, out_tree, *args_flat
):
py_used_outs = tree_util.tree_unflatten(out_tree, used_outs)
py_args = tree_util.tree_unflatten(in_tree, args_flat)
py_out = f(py_used_outs, *py_args)
out_flat, rule_out_tree = tree_util.tree_flatten(py_out)
# TODO(danfm): this check could be stricter. We could check that the Pytree
# structure is the same as out_tree filtered to the used_outs.
if len(out_flat) != sum(used_outs):
raise TypeError(
f"The custom DCE rule {rule_name} for function {fun_name} must return "
f"a pytree that only includes the requested outputs. {rule_name} "
f"returned {py_out} with {len(out_flat)} leaves, but {sum(used_outs)} "
"leaves were expected."
)
store.store(rule_out_tree)
return out_flat


def custom_dce_impl(*args, fun_jaxpr, **_):
return core.jaxpr_as_fun(fun_jaxpr)(*args)


def custom_dce_abstract_eval(*args, fun_jaxpr, **_):
del args # unused
return fun_jaxpr.out_avals, fun_jaxpr.effects


def custom_dce_batching(axis_data, args, dims, *, fun_jaxpr, dce_jaxpr_thunk):
in_batched = [d is not batching.not_mapped for d in dims]
args = [
batching.moveaxis(x, d, 0) if b else x
for b, x, d in zip(in_batched, args, dims)
]
batched_fun_jaxpr, out_batched = batching.batch_jaxpr(
fun_jaxpr, axis_data, in_batched, True
)

@pe._memoize
def batched_dce_jaxpr_thunk(*used_outs: bool):
dce_jaxpr, used_ins = dce_jaxpr_thunk(*used_outs)
dce_jaxpr_batched, _ = batching.batch_jaxpr(
dce_jaxpr,
axis_data,
[b for used, b in zip(used_ins, in_batched) if used],
True,
)
return dce_jaxpr_batched, used_ins

out_flat = custom_dce_p.bind(
*args,
fun_jaxpr=batched_fun_jaxpr,
dce_jaxpr_thunk=batched_dce_jaxpr_thunk,
)
out_dims = [0 if b else batching.not_mapped for b in out_batched]
return out_flat, out_dims


def custom_dce_jvp(primals, tangents, *, fun_jaxpr, **_):
in_nz = [not isinstance(t, ad.Zero) for t in tangents]
tangents = [t for nz, t in zip(in_nz, tangents) if nz]
jvp_jaxpr, out_nz = ad.jvp_jaxpr(fun_jaxpr, in_nz, False)

# TODO(danfm): We should avoid losing the DCE rule here, but it is more
# straightforward to implement it like this to start. Instead, we should
# bind a custom_dce primitive. To support that, we would need to add a
# partial eval rule, and maybe a transpose rule.
out = core.call_p.bind(
lu.wrap_init(core.jaxpr_as_fun(jvp_jaxpr)), *primals, *tangents
)

out_primals, out_tangents = util.split_list(out, [len(out_nz)])
out_tangents_iter = iter(out_tangents)
out_tangents = [
next(out_tangents_iter) if nz else ad.Zero.from_primal_value(p)
for p, nz in zip(out_primals, out_nz)
]
return out_primals, out_tangents


def custom_dce_rule(used_outs: Sequence[bool], eqn: core.JaxprEqn):
if not any(used_outs) and not pe.has_effects(eqn):
return [False] * len(eqn.invars), None
if all(used_outs):
return [True] * len(eqn.invars), eqn

dce_jaxpr_thunk = eqn.params["dce_jaxpr_thunk"]
jaxpr, used_ins = dce_jaxpr_thunk(*used_outs)
invars = [v for used, v in zip(used_ins, eqn.invars) if used]
outvars = [v for used, v in zip(used_outs, eqn.outvars) if used]

@pe._memoize
def new_dce_jaxpr_thunk(*new_used_outs: bool):
if all(new_used_outs):
return jaxpr, used_ins
all_used_outs = util.merge_lists(
used_outs,
[False] * (len(used_outs) - len(new_used_outs)),
new_used_outs,
)
new_jaxpr, all_used_ins = dce_jaxpr_thunk(*all_used_outs)
not_used, new_used_ins = util.partition_list(used_ins, all_used_ins)
assert not any(not_used)
return new_jaxpr, new_used_ins

new_params = dict(eqn.params)
new_params["dce_jaxpr_thunk"] = new_dce_jaxpr_thunk
new_params["fun_jaxpr"] = jaxpr
new_eqn = pe.new_jaxpr_eqn(
invars,
outvars,
custom_dce_p,
new_params,
jaxpr.effects,
eqn.source_info,
eqn.ctx,
)
return used_ins, new_eqn


custom_dce_p = core.Primitive("custom_dce_call")
custom_dce_p.multiple_results = True
custom_dce_p.def_impl(custom_dce_impl)
custom_dce_p.def_effectful_abstract_eval(custom_dce_abstract_eval)
mlir.register_lowering(
custom_dce_p, mlir.lower_fun(custom_dce_impl, multiple_results=True)
)
batching.fancy_primitive_batchers[custom_dce_p] = custom_dce_batching
ad.primitive_jvps[custom_dce_p] = custom_dce_jvp
pe.dce_rules[custom_dce_p] = custom_dce_rule


def swap_primitives(
jaxpr: core.Jaxpr, old: core.Primitive, new: core.Primitive
) -> core.Jaxpr:
new_eqns = []
for eqn in jaxpr.eqns:
if eqn.primitive is old:
new_eqns.append(eqn.replace(primitive=new))
else:
new_eqns.append(eqn)
return jaxpr.replace(eqns=new_eqns)


dce_sential_p = core.Primitive("dce_sential")
dce_sential_p.multiple_results = True
dce_sential_p.def_impl(custom_dce_impl)
dce_sential_p.def_effectful_abstract_eval(custom_dce_abstract_eval)
Loading

0 comments on commit 370ade2

Please sign in to comment.