Skip to content

Commit

Permalink
Add an experimental interface for customizing DCE behavior.
Browse files Browse the repository at this point in the history
We use dead code elimination (DCE) throughout JAX core to remove unused computations from Jaxprs. This typically works transparently when we're just using `lax` primitives, but opaque calls to `pallas_call` or `ffi_call` can't be cleaned up this way. For many kernels however, the author will know how to generate a more efficient call for specific patterns of used outputs, so it is useful to provide a mechanism for customizing this behavior.

In #22735, I attempted to automatically tackle one specific example of this that comes up frequently, but there have been feature requests for a more general API. This version is bare bones and probably rough around the edges, but it could be a useful starting point for iteration.

PiperOrigin-RevId: 716596154
  • Loading branch information
dfm authored and Google-ML-Automation committed Jan 17, 2025
1 parent a4a657b commit e9c5244
Show file tree
Hide file tree
Showing 5 changed files with 470 additions and 0 deletions.
1 change: 1 addition & 0 deletions jax/BUILD
Original file line number Diff line number Diff line change
Expand Up @@ -199,6 +199,7 @@ py_library_providing_imports_info(
"_src/callback.py",
"_src/checkify.py",
"_src/custom_batching.py",
"_src/custom_dce.py",
"_src/custom_derivatives.py",
"_src/custom_partitioning.py",
"_src/custom_partitioning_sharding_rule.py",
Expand Down
300 changes: 300 additions & 0 deletions jax/_src/custom_dce.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,300 @@
# Copyright 2025 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections.abc import Callable, Sequence
import functools
from typing import Any

from jax._src import api_util
from jax._src import core
from jax._src import custom_api_util
from jax._src import linear_util as lu
from jax._src import source_info_util
from jax._src import traceback_util
from jax._src import tree_util
from jax._src import util
from jax._src.interpreters import ad
from jax._src.interpreters import batching
from jax._src.interpreters import mlir
from jax._src.interpreters import partial_eval as pe

source_info_util.register_exclusion(__file__)
traceback_util.register_exclusion(__file__)

map, unsafe_map = util.safe_map, map
zip, unsafe_zip = util.safe_zip, zip


@custom_api_util.register_custom_decorator_type
class custom_dce:
"""Customize the DCE behavior of a JAX-transformable function.
JAX uses dead code elimination (DCE) to remove unused computations from a
JAX program. This typically works transparently when the program is
completely specified by known JAX operations, but opaque kernels like calls
to :py:func:`~jax.experimental.pallas.pallas_call` or
:py:func:`~jax.ffi.ffi_call`, for example, may cause problems.
This decorator allows users to customize the DCE behavior of a function by
defining a custom DCE rule. This custom rule is then invoked during DCE with
a Pytree of ``bool``s indicating which outputs should be computed.
For example::
@jax.experimental.custom_dce.custom_dce
@jax.custom_vjp
def f(x, y):
return jnp.sin(x) * y, x * jnp.sin(y)
@f.def_dce
def f_dce_rule(used_outs, x, y):
outs = []
if used_outs[0]:
outs.append(jnp.sin(x) * y)
if used_outs[1]:
outs.append(x * jnp.sin(y))
return tuple(outs), (True, True)
In this example, ``used_outs`` is a ``tuple`` with two elements indicating
which outputs are required. Then, the DCE rule returns only the required
outputs, and another Pytree of ``bool``s indicating which inputs were used.
"""

fun: Callable[..., Any]
dce_rule: Callable[..., Any] | None

def __init__(self, fun: Callable[..., Any]):
functools.update_wrapper(self, fun)
self.fun = fun
self.dce_rule = None

__getattr__ = custom_api_util.forward_attr

def def_dce(
self,
dce_rule: Callable[..., Any],
) -> Callable[..., Any]:
"""Define a custom DCE rule for this function.
Args:
dce_rule: A function that takes a Pytree of ``bool``s indicating which
outputs should be computed as the first argument, and then the original
function's arguments. This rule must return a pair of outputs where the
the first element is a Pytree including only the required outputs, and
the second element is a Pytree of ``bool``s indicating which inputs were
used.
"""
self.dce_rule = dce_rule
return dce_rule

@traceback_util.api_boundary
def __call__(self, *args, **kwargs):
args = api_util.resolve_kwargs(self.fun, args, kwargs)
fun_name = util.fun_name(self.fun)
if self.dce_rule is None:
raise AttributeError(
f"No DCE rule defined for custom_dce function {fun_name} using "
"def_dce."
)
rule_name = util.fun_name(self.dce_rule)
args_flat, in_tree = tree_util.tree_flatten(args)
flat_fun, out_tree = api_util.flatten_fun_nokwargs(
lu.wrap_init(self.fun), in_tree
)
in_avals = [core.get_aval(x) for x in args_flat]

@pe._memoize
def dce_jaxpr_thunk(*used_outs: bool):
flat_rule, aux = flatten_dce_rule(
lu.wrap_init(self.dce_rule),
fun_name,
rule_name,
used_outs,
in_tree,
out_tree(),
)
debug = pe.tracing_debug_info(
self.dce_rule, in_tree, lambda: aux()[0], False, "custom_dce_rule"
)
dce_jaxpr, _, consts, () = pe.trace_to_jaxpr_dynamic(
flat_rule, in_avals, debug
)
assert not consts
_, used_ins = aux()

# TODO(danfm): Update debug info.
invars = [v for used, v in zip(used_ins, dce_jaxpr.invars) if used]
dce_jaxpr = dce_jaxpr.replace(invars=invars)

return pe.close_jaxpr(dce_jaxpr), used_ins

debug = pe.tracing_debug_info(
self.fun, in_tree, out_tree, False, "custom_dce"
)
jaxpr, _, consts, () = pe.trace_to_jaxpr_dynamic(flat_fun, in_avals, debug)
assert not consts
closed_call = pe.close_jaxpr(jaxpr)
out_flat = custom_dce_p.bind(
*args_flat, fun_jaxpr=closed_call, dce_jaxpr_thunk=dce_jaxpr_thunk
)
return tree_util.tree_unflatten(out_tree(), out_flat)


@lu.transformation_with_aux2
def flatten_dce_rule(
f, store, primal_name, rule_name, used_outs, in_tree, out_tree, *args_flat
):
py_used_outs = tree_util.tree_unflatten(out_tree, used_outs)
py_args = tree_util.tree_unflatten(in_tree, args_flat)
py_out = f(py_used_outs, *py_args)
if not isinstance(py_out, (tuple, list)) or len(py_out) != 2:
raise TypeError(
f"Custom DCE rule {rule_name} for function {primal_name} must produce "
"a pair (list or tuple of length 2) where the first element only "
"includes the requested outputs, and the second element indicates "
f"which inputs were used. Instead, {rule_name} returned {py_out}."
)
py_out, used_ins = py_out
out_flat, rule_out_tree = tree_util.tree_flatten(py_out)
if len(out_flat) != sum(used_outs):
raise TypeError(
f"Custom DCE rule {rule_name} for function {primal_name} must produce "
"a pair (list or tuple of length 2) where the first element only "
f"includes the requested outputs. {rule_name} returned {py_out} with "
f"{len(out_flat)} leaves, but {sum(used_outs)} were expected."
)

if isinstance(used_ins, list):
used_ins = tuple(used_ins)
used_ins_flat, used_ins_tree = tree_util.tree_flatten(used_ins)
if used_ins_tree != in_tree:
raise TypeError(
f"Custom DCE rule {rule_name} for function {primal_name} must produce "
"a pair (list or tuple of length 2) where the second element has the "
"same container (pytree) structure as the function's input. "
f"{rule_name} returned {used_ins_tree}, but {in_tree} was expected."
)
used_ins_flat = map(bool, used_ins_flat)

store.store((rule_out_tree, used_ins_flat))
return out_flat


def custom_dce_impl(*args, fun_jaxpr, **_):
return core.jaxpr_as_fun(fun_jaxpr)(*args)


def custom_dce_abstract_eval(*args, fun_jaxpr, **_):
del args # unused
return fun_jaxpr.out_avals, fun_jaxpr.effects


def custom_dce_batching(axis_data, args, dims, *, fun_jaxpr, dce_jaxpr_thunk):
in_batched = [d is not batching.not_mapped for d in dims]
args = [
batching.moveaxis(x, d, 0) if b else x
for b, x, d in zip(in_batched, args, dims)
]
batched_fun_jaxpr, out_batched = batching.batch_jaxpr(
fun_jaxpr, axis_data, in_batched, True
)

@pe._memoize
def batched_dce_jaxpr_thunk(*used_outs: bool):
dce_jaxpr, used_ins = dce_jaxpr_thunk(*used_outs)
dce_jaxpr_batched, _ = batching.batch_jaxpr(
dce_jaxpr,
axis_data,
[b for used, b in zip(used_ins, in_batched) if used],
True,
)
return dce_jaxpr_batched, used_ins

out_flat = custom_dce_p.bind(
*args,
fun_jaxpr=batched_fun_jaxpr,
dce_jaxpr_thunk=batched_dce_jaxpr_thunk,
)
out_dims = [0 if b else batching.not_mapped for b in out_batched]
return out_flat, out_dims


def custom_dce_jvp(primals, tangents, *, fun_jaxpr, **_):
in_nz = [not isinstance(t, ad.Zero) for t in tangents]
tangents = [t for nz, t in zip(in_nz, tangents) if nz]
jvp_jaxpr, out_nz = ad.jvp_jaxpr(fun_jaxpr, in_nz, False)

# TODO(danfm): We should avoid losing the DCE rule here, but it is more
# straightforward to implement it like this to start. Instead, we should
# bind a custom_dce primitive. To support that, we would need to add a
# partial eval rule, and maybe a transpose rule.
out = core.call_p.bind(
lu.wrap_init(core.jaxpr_as_fun(jvp_jaxpr)), *primals, *tangents
)

out_primals, out_tangents = util.split_list(out, [len(out_nz)])
out_tangents_iter = iter(out_tangents)
out_tangents = [
next(out_tangents_iter) if nz else ad.Zero.from_primal_value(p)
for p, nz in zip(out_primals, out_nz)
]
return out_primals, out_tangents


def custom_dce_rule(used_outs: Sequence[bool], eqn: core.JaxprEqn):
if not any(used_outs) and not pe.has_effects(eqn):
return [False] * len(eqn.invars), None

dce_jaxpr_thunk = eqn.params["dce_jaxpr_thunk"]
jaxpr, used_ins = dce_jaxpr_thunk(*used_outs)
invars = [v for used, v in zip(used_ins, eqn.invars) if used]
outvars = [v for used, v in zip(used_outs, eqn.outvars) if used]

@pe._memoize
def new_dce_jaxpr_thunk(*new_used_outs: bool):
all_used_outs = util.merge_lists(
used_outs,
[False] * (len(used_outs) - len(new_used_outs)),
new_used_outs,
)
new_jaxpr, all_used_ins = dce_jaxpr_thunk(*all_used_outs)
not_used, new_used_ins = util.partition_list(used_ins, all_used_ins)
assert not any(not_used)
return new_jaxpr, new_used_ins

new_params = dict(eqn.params)
new_params["dce_jaxpr_thunk"] = new_dce_jaxpr_thunk
new_params["fun_jaxpr"] = jaxpr
new_eqn = pe.new_jaxpr_eqn(
invars,
outvars,
custom_dce_p,
new_params,
jaxpr.effects,
eqn.source_info,
eqn.ctx,
)
return used_ins, new_eqn


custom_dce_p = core.Primitive("custom_dce_call")
custom_dce_p.multiple_results = True
custom_dce_p.def_impl(custom_dce_impl)
custom_dce_p.def_effectful_abstract_eval(custom_dce_abstract_eval)
mlir.register_lowering(
custom_dce_p, mlir.lower_fun(custom_dce_impl, multiple_results=True)
)
batching.fancy_primitive_batchers[custom_dce_p] = custom_dce_batching
ad.primitive_jvps[custom_dce_p] = custom_dce_jvp
pe.dce_rules[custom_dce_p] = custom_dce_rule
18 changes: 18 additions & 0 deletions jax/experimental/custom_dce.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
# Copyright 2025 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from jax._src.custom_dce import (
custom_dce as custom_dce,
custom_dce_p as custom_dce_p,
)
3 changes: 3 additions & 0 deletions tests/BUILD
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,9 @@ jax_multiplatform_test(
srcs = ["api_test.py"],
enable_configs = ["tpu_v3_2x2"],
shard_count = 10,
deps = [
"//jax:experimental",
],
)

jax_multiplatform_test(
Expand Down
Loading

0 comments on commit e9c5244

Please sign in to comment.