Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

added storage functionality for raw windows #121

Merged
merged 5 commits into from
Aug 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion src/aces/__main__.py
Original file line number Diff line number Diff line change
Expand Up @@ -173,7 +173,9 @@ def main(cfg: DictConfig):
logger.warning("Output dataframe is empty; adding an empty patient ID column.")
result = result.with_columns(pl.lit(None, dtype=pl.Int64).alias("patient_id"))
result = result.head(0)

if cfg.window_stats_dir:
Path(cfg.window_stats_filepath).parent.mkdir(exist_ok=True, parents=True)
result.write_parquet(cfg.window_stats_filepath)
mmcdermott marked this conversation as resolved.
Show resolved Hide resolved
result = get_and_validate_label_schema(result)
pq.write_table(result, cfg.output_filepath)
else:
Expand Down
3 changes: 3 additions & 0 deletions src/aces/configs/aces.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,9 @@ config_path: ${cohort_dir}/${cohort_name}.yaml
# Path to store the output file. The `${data._prefix}` addition allows us to add shard specific prefixes in a
# sharded data mode.
output_filepath: ${cohort_dir}/${cohort_name}${data._prefix}.parquet
# Optional path to store the output file with the raw window data.
window_stats_dir: null
window_stats_filepath: ${window_stats_dir}/${cohort_name}${data._prefix}.parquet

log_dir: ${cohort_dir}/${cohort_name}/.logs

Expand Down
268 changes: 267 additions & 1 deletion tests/test_meds.py
Oufattole marked this conversation as resolved.
Show resolved Hide resolved
Original file line number Diff line number Diff line change
Expand Up @@ -5,15 +5,23 @@

root = rootutils.setup_root(__file__, dotenv=True, pythonpath=True, cwd=True)

import tempfile
from io import StringIO
from pathlib import Path

import polars as pl
import pyarrow as pa
from loguru import logger
from meds import label_schema
from yaml import load as load_yaml

from .utils import cli_test
from .utils import (
assert_df_equal,
cli_test,
run_command,
write_input_files,
write_task_configs,
)

try:
from yaml import CLoader as Loader
Expand Down Expand Up @@ -360,6 +368,175 @@ def parse_labels_yaml(yaml_str: str) -> dict[str, pl.DataFrame]:
"""
)

WANT_EMPTY_WINDOW_SCHEMA = {"patient_id": pl.Int64}
WANT_NON_EMPTY_WINDOW_SCHEMA = {
"patient_id": pl.UInt32,
"prediction_time": pl.Datetime,
"boolean_value": pl.Int64,
"trigger": pl.Datetime,
"input.end_summary": pl.Struct(
[
pl.Field("window_name", pl.Utf8),
pl.Field("timestamp_at_start", pl.Datetime),
pl.Field("timestamp_at_end", pl.Datetime),
pl.Field("admission", pl.Int64),
pl.Field("discharge", pl.Int64),
pl.Field("death", pl.Int64),
pl.Field("discharge_or_death", pl.Int64),
pl.Field("_ANY_EVENT", pl.Int64),
]
),
"input.start_summary": pl.Struct(
[
pl.Field("window_name", pl.Utf8),
pl.Field("timestamp_at_start", pl.Datetime),
pl.Field("timestamp_at_end", pl.Datetime),
pl.Field("admission", pl.Int64),
pl.Field("discharge", pl.Int64),
pl.Field("death", pl.Int64),
pl.Field("discharge_or_death", pl.Int64),
pl.Field("_ANY_EVENT", pl.Int64),
]
),
"gap.end_summary": pl.Struct(
[
pl.Field("window_name", pl.Utf8),
pl.Field("timestamp_at_start", pl.Datetime),
pl.Field("timestamp_at_end", pl.Datetime),
pl.Field("admission", pl.Int64),
pl.Field("discharge", pl.Int64),
pl.Field("death", pl.Int64),
pl.Field("discharge_or_death", pl.Int64),
pl.Field("_ANY_EVENT", pl.Int64),
]
),
"target.end_summary": pl.Struct(
[
pl.Field("window_name", pl.Utf8),
pl.Field("timestamp_at_start", pl.Datetime),
pl.Field("timestamp_at_end", pl.Datetime),
pl.Field("admission", pl.Int64),
pl.Field("discharge", pl.Int64),
pl.Field("death", pl.Int64),
pl.Field("discharge_or_death", pl.Int64),
pl.Field("_ANY_EVENT", pl.Int64),
]
),
}

WANT_TRAIN_WINDOW_DATA = """
[
{
"patient_id": 4,
"prediction_time": "1991-01-28 23:32:00",
"boolean_value": 0,
"trigger": "1991-01-27 23:32:00",
"input.end_summary": {
"window_name": "input.end",
"timestamp_at_start": "1991-01-27 23:32:00",
"timestamp_at_end": "1991-01-28 23:32:00",
"admission": 0,
"discharge": 0,
"death": 0,
"discharge_or_death": 0,
"_ANY_EVENT": 4
},
"input.start_summary": {
"window_name": "input.start",
"timestamp_at_start": "1989-12-01 12:03:00",
"timestamp_at_end": "1991-01-28 23:32:00",
"admission": 2,
"discharge": 1,
"death": 0,
"discharge_or_death": 1,
"_ANY_EVENT": 16
},
"gap.end_summary": {
"window_name": "gap.end",
"timestamp_at_start": "1991-01-27 23:32:00",
"timestamp_at_end": "1991-01-29 23:32:00",
"admission": 0,
"discharge": 0,
"death": 0,
"discharge_or_death": 0,
"_ANY_EVENT": 5
},
"target.end_summary": {
"window_name": "target.end",
"timestamp_at_start": "1991-01-29 23:32:00",
"timestamp_at_end": "1991-01-31 02:15:00",
"admission": 0,
"discharge": 1,
"death": 0,
"discharge_or_death": 1,
"_ANY_EVENT": 7
}
}
]
"""

WANT_HELD_OUT_WINDOW_DATA = """
[
{
"patient_id": 1,
"prediction_time": "1991-01-28 23:32:00",
"boolean_value": 0,
"trigger": "1991-01-27 23:32:00",
"input.end_summary": {
"window_name": "input.end",
"timestamp_at_start": "1991-01-27 23:32:00",
"timestamp_at_end": "1991-01-28 23:32:00",
"admission": 0,
"discharge": 0,
"death": 0,
"discharge_or_death": 0,
"_ANY_EVENT": 4
},
"input.start_summary": {
"window_name": "input.start",
"timestamp_at_start": "1989-12-01 12:03:00",
"timestamp_at_end": "1991-01-28 23:32:00",
"admission": 2,
"discharge": 1,
"death": 0,
"discharge_or_death": 1,
"_ANY_EVENT": 16
},
"gap.end_summary": {
"window_name": "gap.end",
"timestamp_at_start": "1991-01-27 23:32:00",
"timestamp_at_end": "1991-01-29 23:32:00",
"admission": 0,
"discharge": 0,
"death": 0,
"discharge_or_death": 0,
"_ANY_EVENT": 5
},
"target.end_summary": {
"window_name": "target.end",
"timestamp_at_start": "1991-01-29 23:32:00",
"timestamp_at_end": "1991-01-31 02:15:00",
"admission": 0,
"discharge": 1,
"death": 0,
"discharge_or_death": 1,
"_ANY_EVENT": 7
}
}
]
"""


WANT_WINDOW_SHARDS = {
"train/0.parquet": pl.DataFrame({}, schema=WANT_EMPTY_WINDOW_SCHEMA),
"train/1.parquet": pl.read_json(StringIO(WANT_TRAIN_WINDOW_DATA), schema=WANT_NON_EMPTY_WINDOW_SCHEMA),
"held_out/0/0.parquet": pl.DataFrame({}, schema=WANT_EMPTY_WINDOW_SCHEMA),
"empty_shard.parquet": pl.DataFrame({}, schema=WANT_EMPTY_WINDOW_SCHEMA),
"held_out.parquet": pl.read_json(
StringIO(WANT_HELD_OUT_WINDOW_DATA), schema=WANT_NON_EMPTY_WINDOW_SCHEMA
),
}


def test_meds():
cli_test(
Expand All @@ -368,3 +545,92 @@ def test_meds():
want_outputs_by_task={TASK_NAME: WANT_SHARDS},
data_standard="meds",
)


def test_meds_window_storage():
input_files = MEDS_SHARDS
task = TASK_NAME
want_outputs_by_task = {TASK_NAME: WANT_SHARDS}
data_standard = "meds"

with tempfile.TemporaryDirectory() as root_dir:
root_dir = Path(root_dir)
data_dir = root_dir / "sample_data" / "data"
cohort_dir = root_dir / "sample_cohort"

wrote_files = write_input_files(data_dir, input_files)
assert len(wrote_files) > 1, "No input files were written."
sharded = True
command = "aces-cli --multirun"

wrote_configs = write_task_configs(cohort_dir, {TASK_NAME: TASK_CFG})
if len(wrote_configs) == 0:
raise ValueError("No task configs were written.")

want_outputs = {
cohort_dir / task / f"{n}.parquet": df for n, df in want_outputs_by_task[task].items()
}
window_dir = Path(cohort_dir / "window_stats")
want_window_outputs = {
window_dir / task / filename: want_df for filename, want_df in WANT_WINDOW_SHARDS.items()
}

extraction_config_kwargs = {
"cohort_dir": str(cohort_dir.resolve()),
"cohort_name": task,
"hydra.verbose": True,
"data.standard": data_standard,
"window_stats_dir": str(window_dir.resolve()),
}

if len(wrote_files) > 1:
extraction_config_kwargs["data"] = "sharded"
extraction_config_kwargs["data.root"] = str(data_dir.resolve())
extraction_config_kwargs['"data.shard'] = f'$(expand_shards {str(data_dir.resolve())})"'
else:
extraction_config_kwargs["data.path"] = str(list(wrote_files.values())[0].resolve())

stderr, stdout = run_command(command, extraction_config_kwargs, f"CLI should run for {task}")

try:
if sharded:
out_dir = cohort_dir / task
all_out_fps = list(out_dir.glob("**/*.parquet"))
all_out_fps_str = ", ".join(str(x.relative_to(out_dir)) for x in all_out_fps)
if len(all_out_fps) == 0 and len(want_outputs) > 0:
all_directory_contents = ", ".join(
str(x.relative_to(cohort_dir)) for x in cohort_dir.glob("**/*")
)

raise AssertionError(
f"No output files found for task '{task}'. Found files: {all_directory_contents}"
)

assert len(all_out_fps) == len(
want_outputs
), f"Expected {len(want_outputs)} outputs, got {len(all_out_fps)}: {all_out_fps_str}"

for want_fp, want_df in want_outputs.items():
out_shard = want_fp.relative_to(cohort_dir)
assert want_fp.is_file(), f"Expected {out_shard} to exist."

got_df = pl.read_parquet(want_fp)
assert_df_equal(
want_df, got_df, f"Data mismatch for shard '{out_shard}':\n{want_df}\n{got_df}"
)
assert window_dir.exists(), f"Expected window stats directory {window_dir} to exist."
out_fps = list(window_dir.glob("**/*.parquet"))
assert len(out_fps) == len(
want_window_outputs
), f"Expected {len(want_window_outputs)} window output files, got {len(out_fps)}"

for want_fp, want_df in want_window_outputs.items():
out_shard = want_fp.relative_to(window_dir)
assert want_fp.is_file(), f"Expected {out_shard} to exist."
got_df = pl.read_parquet(want_fp)
assert_df_equal(
want_df, got_df, f"Data mismatch for window shard '{out_shard}':\n{want_df}\n{got_df}"
)
except AssertionError as e:
logger.error(f"{stderr}\n{stdout}")
raise AssertionError(f"Error running task '{task}': {e}") from e
Loading