Skip to content

kavehbc/streambox

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Streambox - Data Science Toolbox

Streambox is a toolbox with a number of functions and decorators useful for data scientists and developers in their projects.

Installation

You can install this package either by forking this repo and install it locally, or by installing it directly from PyPip.

PyPip Installation

pip install streambox

Local Installation

If you want to hot reload new changes, from repo root run:

pip install -e . --upgrade --upgrade-strategy only-if-needed

Documentation

Streambox contains the following main namespaces:

  • decorators: practical decorators
  • tools: practical functions
  • streamlit: functions and hacks for Streamlit

Decorators

streambox.decorators.cache

streambox.decorators.cache(expiry=datetime.timedelta(minutes=30), persistent=False, ttl=None, no_cache=None, show_log=False)

This decorator cache the result of a function based on the input arguments. When the function is executed the first time, the result is being cached, and once it has been called one more time, the cached result would be returned instead of re-executing the function. The cached data is specific to the function arguments, and once the functions is called with new arguments, function would be executed and a new cached data will be stored.

By default, all parameters to a cached function must be hashable. Any parameter whose name begins with _ will not be hashed. You can use this as an "escape hatch" for parameters that are not hashable

Example

import streambox as sb
import logging
import datetime

logging.basicConfig(level=logging.INFO)

@sb.decorators.cache(expiry=datetime.timedelta(seconds=30), persistent=True, ttl=5, show_log=True)
def my_function(arg1, arg2, **kwargs):
    # your function code here
    if some_condition:
        return no_cache
    else:
        if some_other_condition:
            return result1, result2, no_cache
        else:
            return result1, result2
import streambox as sb
import datetime

@sb.decorators.cache(expiry=datetime.timedelta(minutes=1), persistent=True, ttl=5)
def foo(x):
    return x + 1

@sb.decorators.cache(expiry=datetime.timedelta(minutes=1), persistent=False, ttl=5)
def bar(x, y):
    return x * y

streambox.decorators.retry

streambox.decorators.retry(max_tries=5, delay_seconds=None, incremental_delay=10)

This decorator retry function in case of failure.

Parameters

  • max_tries (int) (default: 5)

    This the maximum number of tries. The default value is 5.

  • delay_seconds (int) (default: None)

    This is delay/wait in seconds between each try. If not provided, the default value is None, and it checks incremental_delay.

  • incremental_delay (int) (default: 10)

    This is a factor in delay between each try if delay_seconds is None. The default value is 10 seconds. It means that if the function fails, the next try happens in 10 seconds. If it fails again, it adds another 10 seconds to the previous delay, which makes it 20 seconds.

Example

import streambox as sb


@sb.decorators.retry(max_tries=5, delay_seconds=None)
def run_my_function(result):
    print("Function started")
    raise Exception("This is a custom error!")
    return result

streambox.decorators.logger

streambox.decorators.logger(timer=False)

This decorator logs the beginning and the end of function execution with the execution time.

Parameters

  • timer (boolean) (default: False)

    If timer is set to True, it will show the execution time of the function.

Example

import streambox as sb
import time


@sb.decorators.logger(timer=True)
def run_my_function(result):
    print("Function started")
    time.sleep(2)
    return result

streambox.decorators.email_on_failure

streambox.decorators.email_on_failure(from_email, to_email, smtp_server, smtp_port, username, password)

This decorator sends an email using SMTP settings if there is a failure inside a function.

Parameters

  • sender_email (string)

    The email address of the sender.

  • receiver_email (string)

    The email address of the receiver.

  • subject (string)

    The subject of the email.

  • message (string)

    The body of the email.

  • smtp_server (string)

    The SMTP server hostname or IP address.

  • smtp_port (int)

    The SMTP server port number.

  • smtp_username (string)

    The username to authenticate with the SMTP server.

  • smtp_password (string)

    The password to authenticate with the SMTP server.

Example

Here's an example of using the send_email function to send an email:

import streambox as sb


sender_email = '[email protected]'
receiver_email = '[email protected]'
subject = 'Test email'
message = 'This is a test email sent from Python!'
smtp_server = 'smtp.example.com'
smtp_port = 587
smtp_username = 'username'
smtp_password = 'password'

@sb.decorators.email_on_failure(sender_email, receiver_email,
                                subject, message,
                                smtp_server, smtp_port,
                                smtp_username, smtp_password)
def sample_function():
    # this is failure by division by zero
    print(1/0)

Tools

streambox.tools.flush_cache

streambox.tools.flush_cache()

This decorator flush the persistent cache data files in the package.


Streamlit

Session

streambox.session.get_session_id

streambox.session.get_session_id()

This returns the active session ID of the current user.

Example

import streambox as sb


session_id = sb.session.get_session_id()
print(session_id)

streambox.session.get_user_info

streambox.session.get_user_info()

This returns the current user information (such as email address), if the user is accessed via Streamlit Cloud.

Example

import streambox as sb


user_info = sb.session.get_user_info()
print(user_info)

streambox.session.get_all_sessions

streambox.session.get_all_sessions()

This returns a list of all active session IDs.

Example

import streambox as sb


sessions = sb.session.get_all_sessions()
print(sessions)

Style

streambox.style.hide_footer

streambox.style.hide_footer()

This function injects a CSS to hide footer in Streamlit.

Example

import streamlit as st
import streambox as sb


sb.style.hide_footer()

streambox.style.hide_hamburger_menu

streambox.style.hide_hamburger_menu()

This function injects a CSS to hide hamburger menu in Streamlit.

Example

import streamlit as st
import streambox as sb


sb.style.hide_hamburger_menu()

streambox.style.hide_default_radio_selection

streambox.style.hide_default_radio_selection()

This function injects a CSS to hide the first item in st.radio in Streamlit. This would allow developers to have radio buttons without default value. In order to use this, the first element of the radio button should be an arbitrary item.

Example

import streamlit as st
import streambox as sb


options = ["-", "Item 1", "Item 2"]
item = st.radio("Radio", options=options)

# this function hides the first radio option which is selected by default
sb.style.hide_default_radio_selection()

GitHub Repo

This project is open-source, and it is available on GitHub at https://github.com/kavehbc/streambox.

Developer(s)


Changelog

  • 0.1.0 (23 March 2023)

    This is the genesis version released.

About

Data Science Toolbox

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published