-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
check and cleanup all beamforming code (coh and incoh)
- Loading branch information
Showing
5 changed files
with
599 additions
and
63 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,299 @@ | ||
% 2016 06 16 Beamform from raw data, linear processing only, not triplet | ||
% 2016 09 15 | ||
% 2017 01 06 Change to cardioid beamforming based on beamform_linear_incoh.m | ||
% 2017 01 14 Clean up code | ||
% Take out video plotting parts and stuff related to 'wfm' | ||
|
||
|
||
clear | ||
if isunix | ||
addpath('~/internal_2tb/Dropbox/0_CODE/MATLAB/saveSameSize'); | ||
addpath(['~/internal_2tb/Dropbox/0_CODE/trex_fish/Triplet_processing_toolbox']) | ||
base_save_path = '~/internal_2tb/trex/figs_results/'; | ||
base_data_path = '~/trex_data/TREX13_Reverberation_Package/TREX_FORA_DATA/'; | ||
else | ||
addpath('F:\Dropbox\0_CODE\MATLAB\saveSameSize'); | ||
addpath('F:\Dropbox\0_CODE\trex_fish\Triplet_processing_toolbox') | ||
base_save_path = 'F:\trex\figs_results'; | ||
base_data_path = '\\10.95.97.212\Data\TREX13_Reverberation_Package\TREX_FORA_DATA/'; | ||
end | ||
|
||
plot_opt = 0; | ||
|
||
%% Setting param and paths to read file | ||
run_num = 131; | ||
|
||
TripInUseDtChn = 1; % 1-triplet, 3-array | ||
TripInUseChn0 = 91; % start channel NO. | ||
TripInUseChn1 = 234; % end channel NO. | ||
TripInUseChNum = length([TripInUseChn0:TripInUseDtChn:TripInUseChn1]); | ||
|
||
t_start = 0; % start time within ping | ||
t_end = 20; % end time within ping | ||
|
||
cw = 1525; % sound speed | ||
|
||
M2 = [30.0599; -85.6811]; % GPS location of the array | ||
|
||
% beamform_angle = [-177:-3 3:177]; % beamform angle in XY plane | ||
beamform_angle = 90; | ||
phi = 90; % beamform angle in XZ plane | ||
|
||
param.run_num = run_num; | ||
param.TripInUseDtChn = TripInUseDtChn; | ||
param.TripInUseChn0 = TripInUseChn0; | ||
param.TripInUseChn1 = TripInUseChn1; | ||
param.TripInUseChNum = TripInUseChNum; | ||
param.t_start = t_start; | ||
param.t_end = t_end; | ||
param.cw = cw; | ||
param.map_coord = M2; | ||
param.beamform_angle = beamform_angle; | ||
param.phi = param.phi; | ||
|
||
% Get processing heading | ||
if run_num <= 53 % Fixed heading for different runs | ||
process_heading = 219; | ||
elseif run_num > 53 & run_num <= 62 | ||
process_heading = 333; | ||
else | ||
process_heading = 353; | ||
end | ||
|
||
% Set system and loading gain | ||
if run_num>=41 | ||
gain_sys = 12; | ||
else | ||
gain_sys = 18; | ||
end | ||
gain_load = 46.95; % when FORA driven as triplet array | ||
|
||
param.process_heading = process_heading; | ||
param.gain_sys = gain_sys; | ||
param.gain_load = gain_load; | ||
|
||
% Set save folder | ||
[~,script_name,~] = fileparts(mfilename('fullpath')); | ||
save_path = fullfile(base_save_path, ... | ||
sprintf('%s_run%03d',script_name,run_num)); | ||
if ~exist(save_path,'dir') | ||
mkdir(save_path); | ||
end | ||
|
||
|
||
|
||
%% Set data path and read ECF | ||
full_data_path = fullfile(base_data_path,sprintf('r%d',run_num)); | ||
ecf_file = dir([full_data_path,filesep,'*.ecf']); | ||
[waveform_name,waveform_amp,Nrep,digit_timesec,delay_timems,allsignal_info] = ... | ||
func_read_ECF(fullfile(full_data_path,ecf_file.name)); | ||
|
||
all_datafiles = dir([fullfile(full_data_path, '*.DAT')]); %% find all .dat files | ||
if size(all_datafiles) ~= size(allsignal_info,1) %% make sure .dat match transmission | ||
disp('Total number of pings does not match ECF file. Something is wrong.'); | ||
return; | ||
end | ||
|
||
param.full_data_path = full_data_path; | ||
|
||
|
||
|
||
%% Data processing loop | ||
if plot_opt | ||
fig_polar = figure('position',[150,80,900,700]); | ||
end | ||
|
||
want_file_idx = 150; % index of file to be processed in the whole folder | ||
param.want_file_idx = want_file_idx; | ||
|
||
for nsig = want_file_idx | ||
|
||
% Get data filename and time | ||
fname = strtok(all_datafiles(nsig).name,'.'); | ||
date_str = fname(end-9:end-7); | ||
time_str = fname(end-5:end); | ||
time_hh_local = mod(str2double(time_str(1:2))-5,24); | ||
time_mm_local = str2double(time_str(3:4)); | ||
time_ss_local = str2double(time_str(5:6)); | ||
|
||
data.file_name = fname; | ||
data.file_date = date_str; % julian day | ||
data.file_time = time_str; % [HHMMSS] | ||
data.time_hh_local = time_hh_local; | ||
data.time_mm_local = time_mm_local; | ||
data.time_ss_local = time_ss_local; | ||
|
||
% Load data | ||
% Read-in triplet data including acoustic data, heading, roll, time, and frequency | ||
% Heading_T1,Heading_T2 from heading sensor but not used in processing. | ||
% Fixed heading is used. | ||
[Roll_T1,Roll_T2,Heading_T1,Heading_T2,GLAT,GLON,... | ||
sample_freq,sample_time_ms,tot_data] = ... | ||
func_load_raw_FORA_data(full_data_path, all_datafiles, nsig, t_start, t_end,... | ||
TripInUseChn0,TripInUseDtChn,TripInUseChn1); | ||
Nt = length(sample_time_ms); | ||
t = sample_time_ms/1000; | ||
|
||
data.Roll_T1 = Roll_T1; | ||
data.Roll_T2 = Roll_T2; | ||
data.Heading_T1 = Heading_T1; | ||
data.Heading_T2 = Heading_T2; | ||
data.GLAT = GLAT; | ||
data.GLON = GLON; | ||
data.sample_freq = sample_freq; | ||
|
||
% Use info from the ECF file to recontruct, bandwidth, center freq, | ||
% pulse length, and tapering. | ||
[F1, F2, PL, Taper] = func_extract_signal_info(nsig, allsignal_info); | ||
|
||
center_freq = (F1+F2)/2*1000; | ||
full_bandwidth = (F2-F1)*1000; | ||
tau = 1/full_bandwidth; | ||
|
||
tx_sig.F1 = F1; | ||
tx_sig.F2 = F2; | ||
tx_sig.PL = PL; | ||
tx_sig.Taper = Taper; | ||
tx_sig.center_freq = center_freq; | ||
tx_sig.full_bandwidth = full_bandwidth; | ||
tx_sig.tau = tau; | ||
|
||
|
||
% generate drive voltage, conjugate FFT for later compression and | ||
% normalization the drive voltage peak to 1 (To LFM signals, peak | ||
% is at the edges of pass and stop bands. This induces less than | ||
% half dB in comparison with normalization using energy.) | ||
drive_voltage_source = gen_theoretical_waveform(sample_freq, F1, F2, PL, Taper); | ||
drive_voltage_source_conjfft = conj(fft(drive_voltage_source, size(tot_data,2))); | ||
drive_voltage_source_conjfft = drive_voltage_source_conjfft/... | ||
max( abs(drive_voltage_source_conjfft) ); % filter function with | ||
% normalization applied! | ||
|
||
tx_sig.drive_voltage_source = drive_voltage_source; | ||
tx_sig.drive_voltage_source_conjfft = drive_voltage_source_conjfft; | ||
|
||
|
||
% Pulse compression | ||
filtered_data = zeros(TripInUseChNum, size(tot_data,2)); | ||
for nch = 1:TripInUseChNum | ||
select_data = squeeze(tot_data(nch, :)); | ||
filtered_data(nch,:) = ... | ||
Gaussian_PCM_fil(select_data,t,center_freq,... | ||
full_bandwidth,drive_voltage_source_conjfft); | ||
end | ||
clear select_data; | ||
|
||
|
||
% Beamform pulse compressed data | ||
dt = t(2)-t(1); %1/fs | ||
|
||
% Get array shape parameter with Newfora_spv_trip | ||
% provided by original author and changed by us for channel selection. | ||
[Y_a,X_a,Z_a] = Newfora_spv_trip(Roll_T2,Roll_T2,... | ||
TripInUseChn0,TripInUseChn1,TripInUseDtChn); | ||
Y_a = -1*Y_a; % NOTE: this change angle definition orientation | ||
% this line is from Jie's original code | ||
array_coord = [X_a',Y_a',Z_a']; | ||
param.array_coord = array_coord; | ||
|
||
|
||
% Define a moving Gaussian window, with the size of 1/bandwidth, | ||
% to take in small chunk of data and beamform. Provide the total | ||
% number of Gaussian windows given the signal recording time. | ||
[Gaus_window,Npts,N_win,step_size,t_win] = ... | ||
func_gen_Gaussian_window(tau,t,sample_freq); | ||
param.Gaus_window = Gaus_window; | ||
param.Npts = Npts; | ||
param.N_win = N_win; | ||
param.step_size = step_size; | ||
data.t_win = t_win; % save this to 'data' to go with r_win | ||
|
||
% Beamforming with moving Gaussian window, stepsize tau = 1/bandwidth | ||
for nwin = 1:N_win | ||
for nch = 1:TripInUseChNum | ||
select_data(nch,:) = ... | ||
reshape( filtered_data(nch,(nwin-1)*step_size+[1:Npts]),... | ||
1,Npts ).*Gaus_window; % Gaussian window | ||
end | ||
beamform(nwin,:) = 2*sum(abs(... | ||
Cardioid_beamformer_foraTrip_INFreq_Domain(select_data,X_a,Y_a,Z_a,... | ||
phi,beamform_angle,dt,cw,max(center_freq-full_bandwidth/2,1),... | ||
min(center_freq+full_bandwidth/2,1/dt*0.5))).^2,2); % sum across frequency | ||
end | ||
data.beamform_nocal = beamform; | ||
|
||
% normalization | ||
normalization_factor = (Npts*dt/tau)*10; % Npt=length of Gaussian window | ||
% dt=1/fs, tau=1/full_bandwidth | ||
beamform = 10*log10( beamform * normalization_factor) + 46.95-GainSet; | ||
|
||
data.beamform = beamform; | ||
|
||
% Determine location to discard data | ||
[~,idx_max] = max(mean(beamform,2)); | ||
if t_win(idx_max)-1>0.5 % if the peak isat ~2 sec (very rare) | ||
idx_t_win_to_cut = find(t_win>2,1,'first'); | ||
r_win = (t_win-2)*cw/2; % range adjusted to 1 sec after transmission | ||
else | ||
idx_t_win_to_cut = find(t_win>1,1,'first'); | ||
r_win = (t_win-1)*cw/2; % range adjusted to 1 sec after transmission | ||
end | ||
|
||
data.cut_idx = idx_t_win_to_cut; | ||
data.range_beam = r_win; | ||
|
||
% Angle routines modifided from Jie's code | ||
AngleOfArray = 180 - process_heading; | ||
Y = r_win'*cos((beamform_angle-AngleOfArray)*pi/180); | ||
X = r_win'*sin((beamform_angle-AngleOfArray)*pi/180); | ||
|
||
data.X = X; | ||
data.Y = Y; | ||
data.AngleOfArray = AngleOfArray; | ||
|
||
% Save results | ||
data = orderfields(data); | ||
param = orderfields(param); | ||
tx_sig = orderfields(tx_sig); | ||
|
||
save_fname = sprintf('%s_run%03d_ping%04d',script_name,run_num,nsig); % data | ||
save(fullfile(save_path,[save_fname,'.mat']),'param','tx_sig','data'); | ||
|
||
|
||
% Polar energy plot for this ping | ||
if plot_opt | ||
r_win_adj = r_win(idx_t_win_to_cut:end); | ||
beamform_adj = beamform(idx_t_win_to_cut:end,:); | ||
|
||
beamform_adj_detrend = beamform_adj +... % detrend, ad-hoc | ||
repmat(30*log10(r_win_adj'),1,size(beamform_adj,2)); | ||
|
||
% load in bathymetry map and clutter objects | ||
[Map_X,Map_Y,Map_Z,wrecgps] = func_load_map_targets(M2); | ||
|
||
cla | ||
h1 = pcolor(X,Y,beamform_adj_detrend); % plot echoes | ||
set(h1,'edgecolor','none') | ||
hold on | ||
h1m = pcolor(X_mir,Y_mir,beamform_adj_detrend); % plot echoes | ||
set(h1m,'edgecolor','none') | ||
[c,h2]=contour(Map_X/1000,Map_Y/1000,Map_Z,[0:-2:-30],'k'); % plot map contour | ||
clabel(c,h2,'fontsize',8,'linewidth',1,'Color','k'); | ||
colormap(jet) | ||
colorbar | ||
caxis([180 210]) | ||
axis equal | ||
xlabel('Distance (km)'); | ||
ylabel('Distance (km)'); | ||
axis([-11 11 -11 11]) | ||
title(sprintf('Ping %04d, local time %02d:%02d:%02d',... | ||
nsig,time_hh_local,time_mm_local,time_ss_local)); | ||
hold off | ||
|
||
saveSameSize_100(gcf,'file',fullfile(save_path,save_fname),... | ||
'format','png'); | ||
%saveas(gcf,fullfile(save_path,[save_fname,'.fig']),'fig'); | ||
end | ||
|
||
end % loop through all pings | ||
|
Oops, something went wrong.