Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[FMV][GlobalOpt] Statically resolve calls to versioned functions. #87939

Open
wants to merge 14 commits into
base: main
Choose a base branch
from

Conversation

labrinea
Copy link
Collaborator

@labrinea labrinea commented Apr 7, 2024

To deduce whether the optimization is legal we need to compare the target
features between caller and callee versions. The criteria for bypassing
the resolver are the following:

  • If the callee's feature set is a subset of the caller's feature set,
    then the callee is a candidate for direct call.

  • Among such candidates the one of highest priority is the best match
    and it shall be picked, unless there is a version of the callee with
    higher priority than the best match which cannot be picked from a
    higher priority caller (directly or through the resolver).

  • For every higher priority callee version than the best match, there
    is a higher priority caller version whose feature set availability
    is implied by the callee's feature set.

@llvmbot
Copy link
Member

llvmbot commented Apr 7, 2024

@llvm/pr-subscribers-tablegen
@llvm/pr-subscribers-backend-aarch64
@llvm/pr-subscribers-llvm-transforms

@llvm/pr-subscribers-llvm-analysis

Author: Alexandros Lamprineas (labrinea)

Changes

To deduce whether the optimization is legal we need to compare the target
features between caller and callee versions. The criteria for bypassing
the resolver are the following:

  • If the callee's feature set is a subset of the caller's feature set,
    then the callee is a candidate for direct call.

  • Among such candidates the one of highest priority is the best match
    and it shall be picked, unless there is a version of the callee with
    higher priority than the best match which cannot be picked because
    there is no corresponding caller for whom it would have been the best
    match.

Implementation details:

First we collect all the callee versions in feature priority order. We do
the same for all the callsites. Then we try to constant fold the resolver
for every callsite starting from higher priority callers. This guarantees
that as soon as we find a callee whose priority is lower than the expected
best match then there is no point in continuing further.

The constant folding works for single basic block resolvers as well as
for resolvers consisting of multiple basic blocks. The set of instructions
we attempt to fold are a handful give or take (return, binop, compare,
select, branch, phi) and we only follow single user use-def chains. For
callsites residing in the same caller we cache the folded result to avoid
redundant computation.


Patch is 24.13 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/87939.diff

8 Files Affected:

  • (modified) llvm/include/llvm/Analysis/TargetTransformInfo.h (+23)
  • (modified) llvm/include/llvm/Analysis/TargetTransformInfoImpl.h (+6)
  • (modified) llvm/lib/Analysis/TargetTransformInfo.cpp (+10)
  • (modified) llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp (+12)
  • (modified) llvm/lib/Target/AArch64/AArch64TargetTransformInfo.h (+6)
  • (modified) llvm/lib/TargetParser/AArch64TargetParser.cpp (+7-2)
  • (modified) llvm/lib/Transforms/IPO/GlobalOpt.cpp (+225-1)
  • (added) llvm/test/Transforms/GlobalOpt/resolve-fmv-ifunc.ll (+211)
diff --git a/llvm/include/llvm/Analysis/TargetTransformInfo.h b/llvm/include/llvm/Analysis/TargetTransformInfo.h
index fa9392b86c15b9..530935fd63d326 100644
--- a/llvm/include/llvm/Analysis/TargetTransformInfo.h
+++ b/llvm/include/llvm/Analysis/TargetTransformInfo.h
@@ -1762,6 +1762,16 @@ class TargetTransformInfo {
   /// false, but it shouldn't matter what it returns anyway.
   bool hasArmWideBranch(bool Thumb) const;
 
+  /// Returns true if the target supports Function MultiVersioning.
+  bool hasFMV() const;
+
+  /// Returns the MultiVersion priority of a given function.
+  uint64_t getFMVPriority(Function &F) const;
+
+  /// Returns the symbol which contains the cpu feature mask used by
+  /// the Function MultiVersioning resolver.
+  GlobalVariable *getCPUFeatures(Module &M) const;
+
   /// \return The maximum number of function arguments the target supports.
   unsigned getMaxNumArgs() const;
 
@@ -2152,6 +2162,9 @@ class TargetTransformInfo::Concept {
   virtual VPLegalization
   getVPLegalizationStrategy(const VPIntrinsic &PI) const = 0;
   virtual bool hasArmWideBranch(bool Thumb) const = 0;
+  virtual bool hasFMV() const = 0;
+  virtual uint64_t getFMVPriority(Function &F) const = 0;
+  virtual GlobalVariable *getCPUFeatures(Module &M) const = 0;
   virtual unsigned getMaxNumArgs() const = 0;
 };
 
@@ -2904,6 +2917,16 @@ class TargetTransformInfo::Model final : public TargetTransformInfo::Concept {
     return Impl.hasArmWideBranch(Thumb);
   }
 
+  bool hasFMV() const override { return Impl.hasFMV(); }
+
+  uint64_t getFMVPriority(Function &F) const override {
+    return Impl.getFMVPriority(F);
+  }
+
+  GlobalVariable *getCPUFeatures(Module &M) const override {
+    return Impl.getCPUFeatures(M);
+  }
+
   unsigned getMaxNumArgs() const override {
     return Impl.getMaxNumArgs();
   }
diff --git a/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h b/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h
index 63c2ef8912b29c..746c09f0d50370 100644
--- a/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h
+++ b/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h
@@ -941,6 +941,12 @@ class TargetTransformInfoImplBase {
 
   bool hasArmWideBranch(bool) const { return false; }
 
+  bool hasFMV() const { return false; }
+
+  uint64_t getFMVPriority(Function &F) const { return 0; }
+
+  GlobalVariable *getCPUFeatures(Module &M) const { return nullptr; }
+
   unsigned getMaxNumArgs() const { return UINT_MAX; }
 
 protected:
diff --git a/llvm/lib/Analysis/TargetTransformInfo.cpp b/llvm/lib/Analysis/TargetTransformInfo.cpp
index 5f933b4587843c..39da6cc4445759 100644
--- a/llvm/lib/Analysis/TargetTransformInfo.cpp
+++ b/llvm/lib/Analysis/TargetTransformInfo.cpp
@@ -1296,6 +1296,16 @@ bool TargetTransformInfo::hasArmWideBranch(bool Thumb) const {
   return TTIImpl->hasArmWideBranch(Thumb);
 }
 
+bool TargetTransformInfo::hasFMV() const { return TTIImpl->hasFMV(); }
+
+uint64_t TargetTransformInfo::getFMVPriority(Function &F) const {
+  return TTIImpl->getFMVPriority(F);
+}
+
+GlobalVariable *TargetTransformInfo::getCPUFeatures(Module &M) const {
+  return TTIImpl->getCPUFeatures(M);
+}
+
 unsigned TargetTransformInfo::getMaxNumArgs() const {
   return TTIImpl->getMaxNumArgs();
 }
diff --git a/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp b/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp
index ee7137b92445bb..a92f859b59a3de 100644
--- a/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp
+++ b/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp
@@ -21,6 +21,7 @@
 #include "llvm/IR/IntrinsicsAArch64.h"
 #include "llvm/IR/PatternMatch.h"
 #include "llvm/Support/Debug.h"
+#include "llvm/TargetParser/AArch64TargetParser.h"
 #include "llvm/Transforms/InstCombine/InstCombiner.h"
 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
 #include <algorithm>
@@ -231,6 +232,17 @@ static bool hasPossibleIncompatibleOps(const Function *F) {
   return false;
 }
 
+uint64_t AArch64TTIImpl::getFMVPriority(Function &F) const {
+  StringRef FeatureStr = F.getFnAttribute("target-features").getValueAsString();
+  SmallVector<StringRef, 8> Features;
+  FeatureStr.split(Features, ",");
+  return AArch64::getCpuSupportsMask(Features);
+}
+
+GlobalVariable *AArch64TTIImpl::getCPUFeatures(Module &M) const {
+  return M.getGlobalVariable("__aarch64_cpu_features");
+}
+
 bool AArch64TTIImpl::areInlineCompatible(const Function *Caller,
                                          const Function *Callee) const {
   SMEAttrs CallerAttrs(*Caller), CalleeAttrs(*Callee);
diff --git a/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.h b/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.h
index de39dea2be43e1..51ad79690679f5 100644
--- a/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.h
+++ b/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.h
@@ -83,6 +83,12 @@ class AArch64TTIImpl : public BasicTTIImplBase<AArch64TTIImpl> {
   unsigned getInlineCallPenalty(const Function *F, const CallBase &Call,
                                 unsigned DefaultCallPenalty) const;
 
+  bool hasFMV() const { return ST->hasFMV(); }
+
+  uint64_t getFMVPriority(Function &F) const;
+
+  GlobalVariable *getCPUFeatures(Module &M) const;
+
   /// \name Scalar TTI Implementations
   /// @{
 
diff --git a/llvm/lib/TargetParser/AArch64TargetParser.cpp b/llvm/lib/TargetParser/AArch64TargetParser.cpp
index 71099462d5ecff..7a3d2fc5f0c9db 100644
--- a/llvm/lib/TargetParser/AArch64TargetParser.cpp
+++ b/llvm/lib/TargetParser/AArch64TargetParser.cpp
@@ -50,8 +50,13 @@ std::optional<AArch64::ArchInfo> AArch64::ArchInfo::findBySubArch(StringRef SubA
 uint64_t AArch64::getCpuSupportsMask(ArrayRef<StringRef> FeatureStrs) {
   uint64_t FeaturesMask = 0;
   for (const StringRef &FeatureStr : FeatureStrs) {
-    if (auto Ext = parseArchExtension(FeatureStr))
-      FeaturesMask |= (1ULL << Ext->CPUFeature);
+    StringRef Feat = resolveExtAlias(FeatureStr);
+    for (const auto &E : Extensions) {
+      if (Feat == E.Name || Feat == E.Feature) {
+        FeaturesMask |= (1ULL << E.CPUFeature);
+        break;
+      }
+    }
   }
   return FeaturesMask;
 }
diff --git a/llvm/lib/Transforms/IPO/GlobalOpt.cpp b/llvm/lib/Transforms/IPO/GlobalOpt.cpp
index da714c9a75701b..75ff270bb09b90 100644
--- a/llvm/lib/Transforms/IPO/GlobalOpt.cpp
+++ b/llvm/lib/Transforms/IPO/GlobalOpt.cpp
@@ -89,7 +89,7 @@ STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
 STATISTIC(NumInternalFunc, "Number of internal functions");
 STATISTIC(NumColdCC, "Number of functions marked coldcc");
-STATISTIC(NumIFuncsResolved, "Number of statically resolved IFuncs");
+STATISTIC(NumIFuncsResolved, "Number of resolved IFuncs");
 STATISTIC(NumIFuncsDeleted, "Number of IFuncs removed");
 
 static cl::opt<bool>
@@ -2462,6 +2462,227 @@ DeleteDeadIFuncs(Module &M,
   return Changed;
 }
 
+static Function *foldResolverForCallSite(CallBase *CS, uint64_t Priority,
+                                         TargetTransformInfo &TTI) {
+  // Look for the instruction which feeds the feature mask to the users.
+  auto findRoot = [&TTI](Function *F) -> Instruction * {
+    for (Instruction &I : F->getEntryBlock())
+      if (auto *Load = dyn_cast<LoadInst>(&I))
+        if (Load->getPointerOperand() == TTI.getCPUFeatures(*F->getParent()))
+          return Load;
+    return nullptr;
+  };
+
+  auto *IF = cast<GlobalIFunc>(CS->getCalledOperand());
+  Instruction *Root = findRoot(IF->getResolverFunction());
+  // There is no such instruction. Bail.
+  if (!Root)
+    return nullptr;
+
+  // Create a constant mask to use as seed for the constant propagation.
+  Constant *Seed = Constant::getIntegerValue(
+      Root->getType(), APInt(Root->getType()->getIntegerBitWidth(), Priority));
+
+  auto DL = CS->getModule()->getDataLayout();
+
+  // Recursively propagate on single use chains.
+  std::function<Constant *(Instruction *, Instruction *, Constant *,
+                           BasicBlock *)>
+      constFoldInst = [&](Instruction *I, Instruction *Use, Constant *C,
+                          BasicBlock *Pred) -> Constant * {
+    // Base case.
+    if (auto *Ret = dyn_cast<ReturnInst>(I))
+      if (Ret->getReturnValue() == Use)
+        return C;
+
+    // Minimal set of instruction types to handle.
+    if (auto *BinOp = dyn_cast<BinaryOperator>(I)) {
+      bool Swap = BinOp->getOperand(1) == Use;
+      if (auto *Other = dyn_cast<Constant>(BinOp->getOperand(Swap ? 0 : 1)))
+        C = Swap ? ConstantFoldBinaryInstruction(BinOp->getOpcode(), Other, C)
+                 : ConstantFoldBinaryInstruction(BinOp->getOpcode(), C, Other);
+    } else if (auto *Cmp = dyn_cast<CmpInst>(I)) {
+      bool Swap = Cmp->getOperand(1) == Use;
+      if (auto *Other = dyn_cast<Constant>(Cmp->getOperand(Swap ? 0 : 1)))
+        C = Swap ? ConstantFoldCompareInstOperands(Cmp->getPredicate(), Other,
+                                                   C, DL)
+                 : ConstantFoldCompareInstOperands(Cmp->getPredicate(), C,
+                                                   Other, DL);
+    } else if (auto *Sel = dyn_cast<SelectInst>(I)) {
+      if (Sel->getCondition() == Use)
+        C = dyn_cast<Constant>(C->isZeroValue() ? Sel->getFalseValue()
+                                                : Sel->getTrueValue());
+    } else if (auto *Phi = dyn_cast<PHINode>(I)) {
+      if (Pred)
+        C = dyn_cast<Constant>(Phi->getIncomingValueForBlock(Pred));
+    } else if (auto *Br = dyn_cast<BranchInst>(I)) {
+      if (Br->getCondition() == Use) {
+        BasicBlock *BB = Br->getSuccessor(C->isZeroValue());
+        return constFoldInst(&BB->front(), Root, Seed, Br->getParent());
+      }
+    } else {
+      // Don't know how to handle. Bail.
+      return nullptr;
+    }
+
+    // Folding succeeded. Continue.
+    if (C && I->hasOneUse())
+      if (auto *UI = dyn_cast<Instruction>(I->user_back()))
+        return constFoldInst(UI, I, C, nullptr);
+
+    return nullptr;
+  };
+
+  // Collect all users in the entry block ordered by proximity. The rest of
+  // them can be discovered later. Unfortunately we cannot simply traverse
+  // the Root's 'users()' as their order is not the same as execution order.
+  unsigned NUsersLeft = std::distance(Root->user_begin(), Root->user_end());
+  SmallVector<Instruction *> Users;
+  for (Instruction &I : *Root->getParent()) {
+    if (any_of(I.operands(), [Root](auto &Op) { return Op == Root; })) {
+      Users.push_back(&I);
+      if (--NUsersLeft == 0)
+        break;
+    }
+  }
+
+  // Return as soon as we find a foldable user. It has the highest priority.
+  for (Instruction *I : Users) {
+    Constant *C = constFoldInst(I, Root, Seed, nullptr);
+    if (C)
+      return cast<Function>(C);
+  }
+
+  return nullptr;
+}
+
+// Bypass the IFunc Resolver of MultiVersioned functions when possible. To
+// deduce whether the optimization is legal we need to compare the target
+// features between caller and callee versions. The criteria for bypassing
+// the resolver are the following:
+//
+// * If the callee's feature set is a subset of the caller's feature set,
+//   then the callee is a candidate for direct call.
+//
+// * Among such candidates the one of highest priority is the best match
+//   and it shall be picked, unless there is a version of the callee with
+//   higher priority than the best match which cannot be picked because
+//   there is no corresponding caller for whom it would have been the best
+//   match.
+//
+static bool OptimizeNonTrivialIFuncs(
+    Module &M, function_ref<TargetTransformInfo &(Function &)> GetTTI) {
+  bool Changed = false;
+
+  std::function<void(Value *, SmallVectorImpl<Function *> &)> visitValue =
+      [&](Value *V, SmallVectorImpl<Function *> &FuncVersions) {
+        if (auto *Func = dyn_cast<Function>(V)) {
+          FuncVersions.push_back(Func);
+        } else if (auto *Sel = dyn_cast<SelectInst>(V)) {
+          visitValue(Sel->getTrueValue(), FuncVersions);
+          visitValue(Sel->getFalseValue(), FuncVersions);
+        } else if (auto *Phi = dyn_cast<PHINode>(V))
+          for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
+            visitValue(Phi->getIncomingValue(I), FuncVersions);
+      };
+
+  for (GlobalIFunc &IF : M.ifuncs()) {
+    if (IF.isInterposable())
+      continue;
+
+    Function *Resolver = IF.getResolverFunction();
+    if (!Resolver)
+      continue;
+
+    if (Resolver->isInterposable())
+      continue;
+
+    TargetTransformInfo &TTI = GetTTI(*Resolver);
+    if (!TTI.hasFMV())
+      return false;
+
+    // Discover the callee versions.
+    SmallVector<Function *> Callees;
+    for (BasicBlock &BB : *Resolver)
+      if (auto *Ret = dyn_cast_or_null<ReturnInst>(BB.getTerminator()))
+        visitValue(Ret->getReturnValue(), Callees);
+
+    if (Callees.empty())
+      continue;
+
+    // Cache the feature mask for each callee version.
+    DenseMap<Function *, uint64_t> CalleePriorityMap;
+    for (Function *Callee : Callees) {
+      auto [It, Inserted] = CalleePriorityMap.try_emplace(Callee);
+      if (Inserted)
+        It->second = TTI.getFMVPriority(*Callee);
+    }
+
+    // Sort the callee versions in increasing feature priority order.
+    // Every time we find a caller that matches the highest priority
+    // callee we pop_back() one from this ordered list.
+    llvm::stable_sort(Callees, [&](auto *LHS, auto *RHS) {
+      return CalleePriorityMap[LHS] < CalleePriorityMap[RHS];
+    });
+
+    // Find the callsites and cache the feature mask for each caller.
+    DenseMap<Function *, uint64_t> CallerPriorityMap;
+    SmallVector<CallBase *> CallSites;
+    for (User *U : IF.users()) {
+      if (auto *CB = dyn_cast<CallBase>(U)) {
+        if (CB->getCalledOperand() == &IF) {
+          Function *Caller = CB->getFunction();
+          auto [It, Inserted] = CallerPriorityMap.try_emplace(Caller);
+          if (Inserted)
+            It->second = TTI.getFMVPriority(*Caller);
+          CallSites.push_back(CB);
+        }
+      }
+    }
+
+    // Sort the callsites in decreasing feature priority order.
+    llvm::stable_sort(CallSites, [&](auto *LHS, auto *RHS) {
+      return CallerPriorityMap[LHS->getFunction()] >
+             CallerPriorityMap[RHS->getFunction()];
+    });
+
+    // Now try to constant fold the resolver for every callsite starting
+    // from higher priority callers. This guarantees that as soon as we
+    // find a callee whose priority is lower than the expected best match
+    // then there is no point in continuing further.
+    DenseMap<uint64_t, Function *> foldedResolverCache;
+    for (CallBase *CS : CallSites) {
+      uint64_t CallerPriority = CallerPriorityMap[CS->getFunction()];
+      auto [It, Inserted] = foldedResolverCache.try_emplace(CallerPriority);
+      Function *&Callee = It->second;
+      if (Inserted)
+        Callee = foldResolverForCallSite(CS, CallerPriority, TTI);
+      if (Callee) {
+        if (!Callees.empty()) {
+          // If the priority of the candidate is greater or equal to
+          // the expected best match then it shall be picked. Otherwise
+          // there is a higher priority callee without a corresponding
+          // caller, in which case abort.
+          uint64_t CalleePriority = CalleePriorityMap[Callee];
+          if (CalleePriority == CalleePriorityMap[Callees.back()])
+            Callees.pop_back();
+          else if (CalleePriority < CalleePriorityMap[Callees.back()])
+            break;
+        }
+        CS->setCalledOperand(Callee);
+        Changed = true;
+      } else {
+        // Oops, something went wrong. We couldn't fold. Abort.
+        break;
+      }
+    }
+    if (IF.use_empty() ||
+        all_of(IF.users(), [](User *U) { return isa<GlobalAlias>(U); }))
+      NumIFuncsResolved++;
+  }
+  return Changed;
+}
+
 static bool
 optimizeGlobalsInModule(Module &M, const DataLayout &DL,
                         function_ref<TargetLibraryInfo &(Function &)> GetTLI,
@@ -2525,6 +2746,9 @@ optimizeGlobalsInModule(Module &M, const DataLayout &DL,
     // Optimize IFuncs whose callee's are statically known.
     LocalChange |= OptimizeStaticIFuncs(M);
 
+    // Optimize IFuncs based on the target features of the caller.
+    LocalChange |= OptimizeNonTrivialIFuncs(M, GetTTI);
+
     // Remove any IFuncs that are now dead.
     LocalChange |= DeleteDeadIFuncs(M, NotDiscardableComdats);
 
diff --git a/llvm/test/Transforms/GlobalOpt/resolve-fmv-ifunc.ll b/llvm/test/Transforms/GlobalOpt/resolve-fmv-ifunc.ll
new file mode 100644
index 00000000000000..bcc73c8e44970f
--- /dev/null
+++ b/llvm/test/Transforms/GlobalOpt/resolve-fmv-ifunc.ll
@@ -0,0 +1,211 @@
+; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --filter "call i32 @(test_single_bb_resolver|test_multi_bb_resolver)" --version 4
+; RUN: opt --passes=globalopt -o - -S < %s | FileCheck %s
+
+target datalayout = "e-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"
+target triple = "aarch64-unknown-linux-gnu"
+
+$test_single_bb_resolver.resolver = comdat any
+$test_multi_bb_resolver.resolver = comdat any
+$foo.resolver = comdat any
+$bar.resolver = comdat any
+
+@__aarch64_cpu_features = external local_unnamed_addr global { i64 }
+
+@test_single_bb_resolver.ifunc = weak_odr alias i32 (), ptr @test_single_bb_resolver
+@test_multi_bb_resolver.ifunc = weak_odr dso_local alias i32 (), ptr @test_multi_bb_resolver
+@foo.ifunc = weak_odr alias i32 (), ptr @foo
+@bar.ifunc = weak_odr dso_local alias i32 (), ptr @bar
+
+@test_single_bb_resolver = weak_odr ifunc i32 (), ptr @test_single_bb_resolver.resolver
+@test_multi_bb_resolver = weak_odr dso_local ifunc i32 (), ptr @test_multi_bb_resolver.resolver
+@foo = weak_odr ifunc i32 (), ptr @foo.resolver
+@bar = weak_odr dso_local ifunc i32 (), ptr @bar.resolver
+
+declare void @__init_cpu_features_resolver() local_unnamed_addr
+
+declare i32 @test_single_bb_resolver._Msve() #2
+
+declare i32 @test_single_bb_resolver._Msve2() #3
+
+define i32 @test_single_bb_resolver.default() #1 {
+; CHECK-LABEL: define i32 @test_single_bb_resolver.default(
+; CHECK-SAME: ) #[[ATTR2:[0-9]+]] {
+entry:
+  ret i32 0
+}
+
+define weak_odr ptr @test_single_bb_resolver.resolver() #0 comdat {
+; CHECK-LABEL: define weak_odr ptr @test_single_bb_resolver.resolver(
+; CHECK-SAME: ) #[[ATTR3:[0-9]+]] comdat {
+resolver_entry:
+  tail call void @__init_cpu_features_resolver()
+  %0 = load i64, ptr @__aarch64_cpu_features, align 8
+  %1 = and i64 %0, 68719476736
+  %.not = icmp eq i64 %1, 0
+  %2 = and i64 %0, 1073741824
+  %.not3 = icmp eq i64 %2, 0
+  %test_single_bb_resolver._Msve.test_single_bb_resolver.default = select i1 %.not3, ptr @test_single_bb_resolver.default, ptr @test_single_bb_resolver._Msve
+  %common.ret.op = select i1 %.not, ptr %test_single_bb_resolver._Msve.test_single_bb_resolver.default, ptr @test_single_bb_resolver._Msve2
+  ret ptr %common.ret.op
+}
+
+define i32 @foo._Msve() #2 {
+; CHECK-LABEL: define i32 @foo._Msve(
+; CHECK-SAME: ) #[[ATTR0:[0-9]+]] {
+; CHECK:    [[CALL:%.*]] = tail call i32 @test_single_bb_resolver._Msve()
+;
+entry:
+  %call = tail call i32 @test_single_bb_resolver()
+  %add = add nsw i32 %call, 30
+  ret i32 %add
+}
+
+define i32 @foo._Msve2() #3 {
+; CHECK-LABEL: define i32 @foo._Msve2(
+; CHECK-SAME: ) #[[ATTR1:[0-9]+]] {
+; CHECK:    [[CALL1:%.*]] = tail call i32 @test_single_bb_resolver._Msve2()
+; CHECK:    [[CALL2:%.*]] = tail call i32 @test_single_bb_resolver._Msve2()
+;
+entry:
+  %call1 = tail call i32 @test_single_bb_resolver()
+  %call2 = tail call i32 @test_single_bb_resolver()
+  %added = add nsw i32 %call1, %call2
+  %add = add nsw i32 %added, 20
+  ret i32 %add
+}
+
+define i32 @foo.default() #1 {
+; CHECK-LABEL: define i32 @foo.default(
+; CHECK-SAME: ) #[[ATTR2:[0-9]+]] {
+; CHECK:    [[CALL:%.*]] = tail call i32 @test_single_bb_resolver.default()
+;
+entry:
+  %call = tail call i32 @test_single_bb_resolver()
+  %add = add nsw i32 %call, 10
+  ret i32 %add
+}
+
+define weak_odr ptr @foo.resolver() #0 comdat {
+; CHECK-LABEL: define weak_odr ptr @foo.resolver(
+; CHECK-SAME: ) #[[ATTR3:[0-9]+]] comdat {
+resolver_entry:
+  tail call void @__init_cpu_features_resolver()
+  %0 = load i64, ptr @__aarch64_cpu_features, align 8
+  %1 = and i64 %0, 68719476736
+  %.not = icmp eq i64 %1, 0
+  %2 = ...
[truncated]

@labrinea labrinea requested a review from nikic April 7, 2024 20:35
@labrinea labrinea force-pushed the fmv-resolve-ifunc branch from 3ce5520 to 54ffdf4 Compare April 7, 2024 20:43
labrinea added a commit to labrinea/llvm-project that referenced this pull request Apr 7, 2024
This will allow the backend to enable the corresponding subtarget
feature (FeatureFMV), which in turn can be queried for llvm codegen
decisions. See llvm#87939 for example.
@andrewcarlotti
Copy link

The testcase and description look valid, although the description seems a little more conservative than necessary.

If you were to add a bar._Mmops version, would it's call be optimised to test_multi_bb_resolver._Mmops? And would that also enable the call from bar.default to be optimised to point to test_multi_bb_resolver.default?

@labrinea
Copy link
Collaborator Author

labrinea commented Apr 8, 2024

The testcase and description look valid, although the description seems a little more conservative than necessary.

"Subset" is perhaps not the right terminology. I meant to say the feature set is "less or equal to". In other words "implied".

If you were to add a bar._Mmops version, would it's call be optimised to test_multi_bb_resolver._Mmops?

Yes

And would that also enable the call from bar.default to be optimised to point to test_multi_bb_resolver.default?

No, because there is no corresponding caller to pick test_multi_bb_resolver._Msve2.

Ah, now I see your point. Routing bar.default through the resolver could not have picked test_multi_bb_resolver._Msve2, because if the caller doesn't have sve it can't have sve2!

@labrinea
Copy link
Collaborator Author

labrinea commented Apr 8, 2024

@jroelofs, aside from semantics which I'll clarify with Andrew, I am thinking that the constant folding part might be redundant and whether FeatureBitset is an alternative to the TargetParser (ignore the second part, bad idea).

@labrinea labrinea force-pushed the fmv-resolve-ifunc branch 2 times, most recently from 9007fb7 to fe66c7d Compare April 9, 2024 21:38
To deduce whether the optimization is legal we need to compare the target
features between caller and callee versions. The criteria for bypassing
the resolver are the following:

 * If the callee's feature set is a subset of the caller's feature set,
   then the callee is a candidate for direct call.

 * Among such candidates the one of highest priority is the best match
   and it shall be picked, unless there is a version of the callee with
   higher priority than the best match which cannot be picked from a
   higher priority caller (directly or through the resolver).

 * For every higher priority callee version than the best match, there
   is a higher priority caller version whose feature set availability
   is implied by the callee's feature set.

Example:

Callers and Callees are ordered in decreasing priority.
The arrows indicate successful call redirections.

  Caller        Callee      Explanation
=========================================================================
mops+sve2 --+--> mops       all the callee versions are subsets of the
            |               caller but mops has the highest priority
            |
     mops --+    sve2       between mops and default callees, mops wins

      sve        sve        between sve and default callees, sve wins
                            but sve2 does not have a high priority caller

  default -----> default    sve (callee) implies sve (caller),
                            sve2(callee) implies sve (caller),
                            mops(callee) implies mops(caller)
@labrinea labrinea force-pushed the fmv-resolve-ifunc branch from fe66c7d to 02bd5a7 Compare April 9, 2024 23:53
@labrinea
Copy link
Collaborator Author

I've removed the constant folding since it was indeed unnecessary computation. Also I found a testcase which exposes a potential issue: a function version (for example AES) having the same target features as the default. In TargetParser we have ExtensionInfo->DependentFeatures to model this information (I believe @ilinpv introduced this change) and it seems that for some entries we don't add the corresponding backend feature (perhaps intentionally?). I will try to address this in a separate ticket.

@labrinea
Copy link
Collaborator Author

I've removed the constant folding since it was indeed unnecessary computation. Also I found a testcase which exposes a potential issue: a function version (for example AES) having the same target features as the default. In TargetParser we have ExtensionInfo->DependentFeatures to model this information (I believe @ilinpv introduced this change) and it seems that for some entries we don't add the corresponding backend feature (perhaps intentionally?). I will try to address this in a separate ticket.

@andrewcarlotti already has a patch for ACLE ARM-software/acle#315 which removes pmull since it is implied by aes, therefore we can add the missing +aes in ExtensionInfo->DependentFeatures for aes.

labrinea added a commit to labrinea/llvm-project that referenced this pull request Apr 17, 2024
This patch is sorting out inconsistencies in TargetParser regarding:

* features without corresponding ArchExtKind
* features without (Neg)Feature string
* features with incorrect DependentFeatures string

Also fixes "fp" which incorrectly implied "neon".

This leaves us with "rpres" being the only remaining FMV feature
with an incomplete entry. We are are currently reviewing it in
ARM-software/acle#315.

Having accurate ExtensionInfo entries in TargetParser is the only
way of propagating the FMV information from clang to LLVM. If we
don't want to rely on that we have to come up with another plan
of encoding this information in LLVM-IR. For now we are relying
on target-features.

The PR llvm#87939 is an example of why we need this.
@labrinea
Copy link
Collaborator Author

Hi, @jroelofs. This patch has been quiet in a while and the reason is I have been collaborating with @tmatheson-arm in refactoring the TargetParser as a preliminary step. However the landscape doesn't seem to be changing much, it's mostly NFC. What I mean is that for this patch to work we need to be able to express every FMV feature in the LLVM IR attribute "target-features". This isn't the case for a few FMV features and I believe it won't be easy to change. For example the FMV feature AES in ExtensionInfo has no DependentFeatures because the SubtargetFeature for AES is fused with PMULL, meaning we can't link them (the fmv feature and the subtarget counterpart) together as they mean different things. I do not want to rely on the cleanup in ARM-software/acle#315 as features may diverge again between FMV and the AAch64 compiler backend. Spliting up backend features will break backwards compatibility in LLVM IR (because they will also have to be renamed), so maybe we need some other way to propagate FMV information from clang to LLVM (not via the target-features attribute). Is this worth an RFC, like introducing a new attribute for FMV in IR? Is this optimization still valuable to you? Shall we pursue this further or just give up?

@jroelofs
Copy link
Contributor

Yes, this optimization is still interesting to me, but I’m not in a rush. We can take our time on it. I have a non-FMV project I need to focus on over the summer, but I expect to pick up work on things in this area in the fall.

labrinea added a commit to labrinea/llvm-project that referenced this pull request Jul 18, 2024
When generating the body of the ifunc resolver, clang skips runtime
checks for features that are implied from the command line. We bend
this rule for certain features (memtag, bti, dgh), but this happens
quite arbitrarily in my opinion. The reasoning is that some features
are in the HINT instruction space, meaning they operate as NOPs if
the hardware does not support them. Still the user wants to detect
their presence with runtime checks. See llvm#90928 for details.

I think we should always perform runtime checks regardless of the
feature and then try to statically resolve calls whenever a function
is compiled with a sufficiently high set of architecture features
(so including target/target_version/target_clones attributes, and
command line options). This is what GCC does. We have an open PR in
LLVM GlobalOpt since it was suggested not to perform such codegen
optimizations in clang anyway. See llvm#87939.
@jroelofs
Copy link
Contributor

Why do we need to avoid optimizing non-fmv ifuncs?

@labrinea
Copy link
Collaborator Author

labrinea commented Nov 13, 2024

Why do we need to avoid optimizing non-fmv ifuncs?

This optimization is only valid for FMV resolvers because we know what they do: they check the presence of FMV feature bits set by the runtime and return a pointer to the function version which corresponds to those bits. Other ifunc resolvers may do completely different things that have nothing to do with the target-features of the caller/callee.

Copy link

github-actions bot commented Nov 13, 2024

✅ With the latest revision this PR passed the C/C++ code formatter.

* clang format
* remove leftover target hook hasFMV after rebase
* remove filter in regression test after rebase
labrinea added a commit to labrinea/llvm-project that referenced this pull request Nov 14, 2024
Currently we have code with target hooks in CodeGenModule shared
between X86 and AArch64 for sorting MultiVersionResolverOptions.
Those are used when generating IFunc resolvers for FMV. The RISCV
target has different criteria for sorting, therefore it repeats
sorting after calling CodeGenFunction::EmitMultiVersionResolver.

I am moving the FMV priority logic in TargetInfo, so that it can
be implemented by the TargetParser which then makes it possible
to query it from llvm. Here is an example why this is handy:
llvm#87939
labrinea added a commit that referenced this pull request Nov 28, 2024
…116257)

Currently we have code with target hooks in CodeGenModule shared between
X86 and AArch64 for sorting MultiVersionResolverOptions. Those are used
when generating IFunc resolvers for FMV. The RISCV target has different
criteria for sorting, therefore it repeats sorting after calling
CodeGenFunction::EmitMultiVersionResolver.

I am moving the FMV priority logic in TargetInfo, so that it can be
implemented by the TargetParser which then makes it possible to query it
from llvm. Here is an example why this is handy:
#87939
Use FMV priority mask when sorting candidates
Allow the optimization when the caller is non FMV but the attributes match.
Add a problematic test case
@labrinea
Copy link
Collaborator Author

FYI I am ready to rebase this on #122192. I have addressed @goldsteinn 's comment locally, made some adjustments and added a few more tests.

Changed = true;
}
if (IF.use_empty() ||
all_of(IF.users(), [](User *U) { return isa<GlobalAlias>(U); }))
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

That is probably a leftover from the time we had ifunc aliases. Subject to removal.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

5 participants