Skip to content

Commit

Permalink
need simple vit with patch dropout for another project
Browse files Browse the repository at this point in the history
  • Loading branch information
lucidrains committed Dec 5, 2022
1 parent 89e1996 commit 105e97f
Show file tree
Hide file tree
Showing 3 changed files with 163 additions and 1 deletion.
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
setup(
name = 'vit-pytorch',
packages = find_packages(exclude=['examples']),
version = '0.40.1',
version = '0.40.2',
license='MIT',
description = 'Vision Transformer (ViT) - Pytorch',
long_description_content_type = 'text/markdown',
Expand Down
21 changes: 21 additions & 0 deletions vit_pytorch/simple_vit.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,27 @@ def posemb_sincos_2d(patches, temperature = 10000, dtype = torch.float32):
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim = 1)
return pe.type(dtype)

# patch dropout

class PatchDropout(nn.Module):
def __init__(self, prob):
super().__init__()
assert 0 <= prob < 1.
self.prob = prob

def forward(self, x):
if not self.training or self.prob == 0.:
return x

b, n, _, device = *x.shape, x.device

batch_indices = torch.arange(b, device = device)
batch_indices = rearrange(batch_indices, '... -> ... 1')
num_patches_keep = max(1, int(n * (1 - self.prob)))
patch_indices_keep = torch.randn(b, n, device = device).topk(num_patches_keep, dim = -1).indices

return x[batch_indices, patch_indices_keep]

# classes

class FeedForward(nn.Module):
Expand Down
141 changes: 141 additions & 0 deletions vit_pytorch/simple_vit_with_patch_dropout.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,141 @@
import torch
from torch import nn

from einops import rearrange
from einops.layers.torch import Rearrange

# helpers

def pair(t):
return t if isinstance(t, tuple) else (t, t)

def posemb_sincos_2d(patches, temperature = 10000, dtype = torch.float32):
_, h, w, dim, device, dtype = *patches.shape, patches.device, patches.dtype

y, x = torch.meshgrid(torch.arange(h, device = device), torch.arange(w, device = device), indexing = 'ij')
assert (dim % 4) == 0, 'feature dimension must be multiple of 4 for sincos emb'
omega = torch.arange(dim // 4, device = device) / (dim // 4 - 1)
omega = 1. / (temperature ** omega)

y = y.flatten()[:, None] * omega[None, :]
x = x.flatten()[:, None] * omega[None, :]
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim = 1)
return pe.type(dtype)

# patch dropout

class PatchDropout(nn.Module):
def __init__(self, prob):
super().__init__()
assert 0 <= prob < 1.
self.prob = prob

def forward(self, x):
if not self.training or self.prob == 0.:
return x

b, n, _, device = *x.shape, x.device

batch_indices = torch.arange(b, device = device)
batch_indices = rearrange(batch_indices, '... -> ... 1')
num_patches_keep = max(1, int(n * (1 - self.prob)))
patch_indices_keep = torch.randn(b, n, device = device).topk(num_patches_keep, dim = -1).indices

return x[batch_indices, patch_indices_keep]

# classes

class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, dim),
)
def forward(self, x):
return self.net(x)

class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)

self.attend = nn.Softmax(dim = -1)

self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim, bias = False)

def forward(self, x):
x = self.norm(x)

qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)

dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale

attn = self.attend(dots)

out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)

class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head),
FeedForward(dim, mlp_dim)
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x

class SimpleViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, patch_dropout = 0.5):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)

assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'

num_patches = (image_height // patch_height) * (image_width // patch_width)
patch_dim = channels * patch_height * patch_width

self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b h w (p1 p2 c)', p1 = patch_height, p2 = patch_width),
nn.Linear(patch_dim, dim),
)

self.patch_dropout = PatchDropout(patch_dropout)

self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim)

self.to_latent = nn.Identity()
self.linear_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)

def forward(self, img):
*_, h, w, dtype = *img.shape, img.dtype

x = self.to_patch_embedding(img)
pe = posemb_sincos_2d(x)
x = rearrange(x, 'b ... d -> b (...) d') + pe

x = self.patch_dropout(x)

x = self.transformer(x)
x = x.mean(dim = 1)

x = self.to_latent(x)
return self.linear_head(x)

0 comments on commit 105e97f

Please sign in to comment.